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Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for
point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and
fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel
sensors over conventional assay formats include label-free, quantitative, reusable, and continuous mea-
surement capability that can be integrated with equipment-free text or image display. This Review explains
the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers,
and provides an overview of qualitative and quantitative readout technologies. Applications in clinical sam-
ples are discussed, and potential future directions are identified.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

1.1. The need for photonic sensors

The in vitro diagnostics (IVD) market was valued at $53.3 B in 2013
and projected to reach $69.1 B by 2017 (Markets&Markets, 2013;
Shields and Sale, 2014). While the global IVD market is expected to
and Mobile Healthcare.
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grow at a compound annual growth rate (CAGR) of 5.4% until 2020,
the emergingmarkets (Brazil, China, and India) are projected to experi-
ence 10–15% growth (Grand View Research, 2014; Park, 2014; Rosen,
2014). This growth ismainly driven by (i) the shift to personalizedmed-
icine, (ii) the need for minimally invasive rapid diagnostics, (iii) aging
populations in the developed world, and (iv) geographical market ex-
pansion and the increase in the demand from emerging economies
due to infectious and chronic diseases (Akram et al., 2015; Yetisen
et al., 2015b). Although themarket is restrained by stringent regulations
(Mansfield et al., 2005), there is a growing number of commercial prod-
ucts such as diagnostic tests for HIV, hepatitis, HPV, diabetes, blood co-
agulation, fertility, immunoassays, hematology, urinalysis, molecular
diagnostics, and blood gas analyses (Roche, 2014; Siemens, 2014).

The fastest growing segments of the IVD market are molecular
diagnostics and point-of-care (POC) testing, which have attracted
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$650 million in investments over the past five years (Kalorama
Information, 2014; Parmar, 2013; St John and Price, 2014). The expan-
sion of POC diagnostics may be attributed to the government policies
to reduce high-cost healthcare provisions by decreasing the number of
patients in secondary and tertiary hospitals (Price and Kricka, 2007).
POC diagnostics consist of small benchtop or handheld devices
that provide qualitative and semi-quantitative information of target
analytes in the field or at home (Chin et al., 2012). Benchtop prod-
ucts include critical care analyzers, as well as hematology and im-
munology assays. Handheld devices consist of blood glucose tests,
dipsticks for urinalysis and lateral-flow tests (Yetisen et al., 2013).
These handheld devices are simple, rapid, robust in storage and
usage, and low cost. Thus, they are universally applicable for dispos-
able and sensitive POC diagnostics. The sensing mechanisms of
handheld POC diagnostics are based on molecular probes, enzymes,
antibody–antigen interactions, and electrochemistry. Dipstick tests
such as urine test strips utilize molecular dyes and enzymatic
reactions. Such assays are multiplexed and allow the analyses of up
to 12 biomarkers. Recently, new capabilities have been proposed for
these formats to execute multistep processes (Cate et al., 2015). A sig-
nificant limitation of assays based on molecular dyes is that they have
different absorption peaks in the visible spectrum (Martinez et al.,
2008). The interpretation of such assays may be erroneous due to the
subjective readouts and uneven development of colors throughout
the surface. Their semi-quantitative readouts require handheld ana-
lyzers. Additionally, the number of analytes and molecular reactions
that can be combined with chromogens is limited. Hence, standardiza-
tion of color shift in the visible spectrum and expansion to a broad
range of analytes are significant challenges in molecular dye based as-
says (Yetisen, 2015f). Furthermore, while the colorimetric information
is universal, some applications require written readouts for reporting
the concentration of a target analyte. The lateral-flow format is typical-
ly based on immunochromatography involving immobilized antibodies
and functionalized gold nanoparticles, which were originally designed
for qualitative readouts. Recently, newer capabilities were introduced
to this platform to obtain semi-quantitative readouts. For example,
ClearblueDigital Pregnancy Test (Swiss Precision Diagnostics) offers
on-chip quantification of chorionic gonadotropin (hCG) to estimate
the conception date (Pike et al., 2013). Among the over the counter
products, blood glucose monitoring is the largest market segment
due to the prevalence of 382 million diagnosed diabetics worldwide
(Danaei et al., 2011; Diabetes Atlas, 2013). Glucose assays are based
on enzymes such as glucose oxidase (GOx), glucose dehydrogenase
(GDH) or hexokinase, which are read out by handheld devices. Howev-
er, such electrochemical and enzymatic assays are prone to error due to
interference from high partial pressure of oxygen, maltose, and hemat-
ocrit (Tonyushkina and Nichols, 2009). Additionally, these assays do
not allow real-time or on-demand reusable measurements due to the
irreversibility of reactions and assay configurations. The development
of all-in-one platforms that can report on the concentrations of target
analytes by either utilizing the entire visible spectrum, or producing
written information or display images without electrical components
is needed to create low-cost, robust and quantitative POC diagnostics.

The limitations of the existing sensors havemotivated the investiga-
tion of label-free structural color platforms that quantitatively report on
the concentration of target analytes (Zhao et al., 2010a). Structural
coloration was first observed by Robert Hooke and Isaac Newton in
peacock feathers and mother of pearl (nacre) (Hooke, 1665; Newton,
1704). To understand structural coloration, Thomas Young demonstrat-
ed that light could behave like a wave, producing diffraction from sharp
edges or slits (Young, 1804). Awide array ofmechanisms has evolved to
create diverse optical structures, including multilayer reflectors,
photonic crystals, and light scattering structures (Fudouzi, 2011; Zhao
et al., 2012). These structural colors also coincidentally form in compos-
ite andfibrous structures (Martinez-Hurtado et al., 2013; Vignolini et al.,
2012; Vukusic and Sambles, 2003). Structural coloration in nature
occurs mainly through diffraction, but also refraction, plasmonics, or a
combination of both, sometimes complementing pigments. The funda-
mentals of dynamic coloration in photonic structures in nature repre-
sent a potential for constructing transducers that can be modulated by
physical changes.

Structural color-based transducers have advantages over traditional
signal processing approaches in terms of response-range tuning
and label-free reporting. Advances in photography, polymer chemistry,
laser physics, and organic synthesis have enabled bottom-up and
top-down fabrication of photonic structural colors. Hence, the devel-
opments in photonic structures have set the stage for the incorpora-
tion of structural colors in analyte-sensitive hydrophilic polymers
(hydrogels) for sensing applications. In contrast to the absorption
of light by chromophores and electrochemistry, photonic hydrogel sen-
sors incorporate nanostructures that modulate the optical properties of
incident light. Such photonic structures can be created in/on hydrogels
through self-assembly or laser writing techniques. Upon interacting
with a target analyte, hydrogels undergo volumetric changes, which
affect the physical and/or optical properties of the photonic structures.
These photonic structures serve as transducers to quantify the concen-
tration of analytes through changes in spatial periodicity in their dielec-
tric constants, plasmonic resonance shifts, or effective refractive index.
They typically modulate the optical characteristics of electromagnetic
waves by filtering out certain regions of wavelengths, a phenomenon
called the photonic band gap (PBG), which typically occurs in 1D
Bragg gratings as well as 2D and 3D (dimensional) colloidal photonic
crystals (Joannopoulos et al., 2011). However, the filtering mechanism
of these sensors may include Fabry–Pérot interferometer (etalon), or
thin film effects.

This Review presents the operation principles of photonic hydrogel
sensors. It describes the syntheses of analyte-sensitive hydrogel matrix-
es and explains bottom-up and top-down nano/microfabrication
methods to incorporate structures within hydrogels that act as optical
transducers. The technical challenges in sensor fabrication are identi-
fied, and pre-clinical and clinical performance evaluations are present-
ed. This Review also discusses how photonic hydrogel sensors can
address IVDmarket needs. The perceived limitations of photonic hydro-
gel sensors in building commercial products are identified, and poten-
tial future directions are described.

1.2. Historical development of diffraction gratings in hydrogels

Experimentationwith gels in optics began in the 19th century. Fred-
erick Archer invented the collodion process, which utilized albumen
(egg white) photographic prints (Archer, 1851; Blanquart-Evrard,
1847). To improve the collodion process, Richard Maddox reported a
method to create photographic images in gelatin (Maddox, 1871).
Two decades later, Gabriel Lippmann introduced a technique to create
color photographs based on interference of light (Lippmann, 1894).
Lippmann projected an image onto a silver bromide containing
photographic emulsion, which was backed by a mirror of liquid mercu-
ry. The light reflected back by the mirror created standing waves in the
emulsion. This latent image was later photographically developed to
produce periodic silver planes. When illuminated with a broadband
light source, the plate replayed a colored image via diffraction. After
the development of the principle of holography in the 1940s (Gabor,
1948, 1949) and invention of laser in the 1950s (Maiman, 1960), Yuri
Denisyuk of the former Soviet Union, and Emmett Leith and Juris
Upatnieks in the United States created 3D holographic gratings in gela-
tin (Denisyuk, 1962; Leith andUpatnieks, 1962). In parallel to the devel-
opments in holography, hydrogel chemistry also made significant
advances (Loh and Scherman, 2012). Poly(N-isopropylacrylamide)
(PNIPAAm) was first synthesized in Rohm & Haas Company (Philadel-
phia, PA) (Specht et al., 1956); however, its thermal expansion proper-
ties in aqueous solutions were realized after a decade (Heskins and
Guillet, 1968). In the former Czechoslovakia, Otto Wichterle and
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Drahoslav Límdevelopedpoly(2-hydroxyethylmethacrylate) (pHEMA)
for application in soft contact lenses (Wichterle and Lim, 1960).

The advantages of incorporating diffraction gratings in polymers
matrixes have been realized by Thomson-CSF (France) (Loiseaux et al.,
1984). This approach involved forming a medium consisting of
suspended dielectric nanoparticles (~20 nm) in a monomer solution.
Standing waves consisting of high (antinodes) and low (nodes, no dis-
turbance) energy induced by holographic optical forces moved the
nanoparticles into periodic regions. Subsequently, nanoparticles were
fixed to their positions by polymerizing the monomer solution. It was
not until 1990s that the use of holographic gratings in biosensing appli-
cations was proposed by Christopher R. Lowe at the University of Cam-
bridge (Lowe et al., 1995). Holograms were used as recording media to
create diffraction gratings in functionalized hydrogel matrixes and the
principle of operation of hydrogel-based optical sensors was demon-
strated. Independently, Sanford Asher at the University of Pittsburgh
have developed crystalline colloidal arrays (CCAs) for narrow-band fil-
teringdevices in the visible spectrumandUV(Asher, 1986). In their ear-
lier work, the liquid dispersion was contained in a thin planar cell
withinwalls of transparent plastics or glass. However, a significant chal-
lenge with the utilization of the CCAs was their fragility, and the arrays
were affected from vibration, temperature changes, and ionic influ-
ences. Hence, in the 1990s, CCAs were incorporated in hydrogel films
(Haacke et al., 1993). Based on CCAs, Asher and co-workers developed
hydrogel sensors (Asher and Holtz, 1998). Along with the advances in
recognition agents, photonic hydrogel sensors opened up applications
for IVD.

1.3. The prospects for photonic hydrogel sensors

Photonic structures embedded in hydrogels that change their water
content and volume upon interactingwith a specific analyte represent a
new platform to construct IVD devices. Hydrogels are 3D polymer net-
works capable of undergoing reversible volume changes as their
Donnan osmotic pressure varies (Imran et al., 2010; Miyata, 2010).
Hydrogels can be synthesized to be sensitive to a range of clinically rel-
evant analytes (Stuart et al., 2010; Um et al., 2006; Kloxin et al., 2009;
Lendlein et al., 2005; Ehrick et al., 2005; Ehrbar et al., 2008; Cai et al.,
2015; Banwell et al., 2009). These hydrogels consist of bioactive recog-
nitionmolecules that selectively respond to external stimuli via produc-
ing physical or chemical changes (Buenger et al., 2012; Loh and
Scherman, 2012). Functionalized hydrogels can be used as a medium
to incorporate photonic structures for optical signal transduction and
reporting within one device. Numerous bottom-up or top-down nano/
microfabrication methods have been developed to create photonic
structures in miniaturized and multiplexed formats (Zhao et al.,
2010a). Upon interacting with a target analyte, the volumetric change
in the hydrogel is reported through modulations of reflection, diffrac-
tion, refraction, surface plasmon resonance, or emission (Gerlach and
Arndt, 2009). These optical changes act as transducers, allowing various
light properties to be analyzed spectroscopically and correlatedwith the
concentration of the analyte. Additionally, photonic hydrogel sensors
can be tuned to report visually-distinguishable color changes that can
be semi-quantitatively determined without equipment. The most im-
portant advantage of photonic hydrogel sensors over established assay
formats is that they do not rely on labels or electrochemistry to report
on the concentration of a target analyte; hence, they are immune to
marker bleaching, signal drifts, and electromagnetic interference. Pho-
tonic hydrogel sensors (i) incorporate functionalized polymers to re-
spond to a target analyte, (ii) offer reversible real-time measurement
of analytes, (iii) can be tuned to report the concentration of analytes col-
orimetrically from ultraviolet to near-infrared, and (iv) are compatible
with readout devices for quantitative measurements. These photonic
hydrogels may also have optically active elements with capabilities in
displaying 3D images or writing (Naydenova et al., 2008). Hence, the
development of photonic hydrogel sensors has immense potential for
both equipment-free semi-quantitative diagnostics and quantitative
analyzers that are compatible with mobile spectrophotometers and
smartphone readers (Burgess et al., 2013; Yetisen, 2015e).

The potential applications of photonic hydrogel sensors are not lim-
ited to medical diagnostics, but also include veterinary testing, pharma-
ceutical bioassays, and biohazard and environmental monitoring.
However, themain focus area of hydrogel sensors has been in the detec-
tion and/or quantification of chemicals and cells in medical diagnostics.
For example, their potential applications in biochemistry and biology
are monitoring enzyme activity and metabolites (Tian et al., 2014),
and serum albumin ligand binding (Cai et al., 2014). Another potential
area of application of photonic hydrogel sensors includes the detection
of biocontaminants, heavy metals, and nanoparticles in water or air.
The development of environmental sensors is aligned with the strict
regulations imposed by the European Union, and the United States.
Reusable hydrogel-based sensing of environmental contaminants is an
emerging area that can significantly reduce the costs and turnaround
time at resource-limited settings.

2. Photonic band-gap hydrogels

Bragg diffraction of light from nanoscale periodic structures can be
designed to be dependent on the presence of analytes in a controlled
way and therefore can be employed to create sensors reporting from
ultraviolet to near-infrared regions. (Ge and Yin, 2011). Periodic struc-
tures within hydrogel matrixes can be formed using nanostructures,
or can consist of different block copolymers or layers of polyelectrolytes.
The specificity of such sensors is achieved by functionalizing the hydro-
gel matrix with chelating agents or ligands pre- or post-polymerization
(Zhao et al., 2010a). Bottom-up and top-down fabrication techniques
include laser writing of gratings (Yetisen et al., 2014f), colloidal self-
assembly (Cai et al., 2015), pore etching (DeLouise et al., 2005),
spincoating (von Freymann et al., 2013), block-co-polymerization
(Kim et al., 2010), and layer-by-layer deposition (Kotov, 1999).

2.1. Holographic sensors

Holograms can be used as analytical devices to quantify the humid-
ity content and biomolecule concentration (Blyth et al., 1996; Lowe
et al., 1995; Millington et al., 1996; Spooncer et al., 1992). Holographic
sensors incorporate multilayer Bragg diffraction gratings in functional-
ized hydrogel matrixes. Altering the lattice spacing, the effective refrac-
tive index, and/or the refractive index modulation of the Bragg grating
changes the characteristics of the diffracted or transmitted light
(Yetisen, 2015a). For example, in reflection holograms, swelling or
shrinking of the polymer matrix shifts the Bragg peak to longer or
shorter wavelengths, and the change in the position of the Bragg peak
is correlated with the concentration of the analyte that is being mea-
sured (Fig. 1a). The diffraction grating in the hologram acts as a reporter
allowing changes in the color to be monitored semi-quantitatively by
eye, or quantitatively using a spectrophotometer or a smartphone cam-
era. The advantage of holographic sensors over other photonic hydrogel
sensors is the ability to accurately fabricate Bragg gratings using laser
light.

The design of a holographic sensor involves determining
(i) monomers to construct a hydrogel matrix, (ii) a bioactive recogni-
tion group, and (iii) an image recording technique (Yetisen, 2015d). Com-
monly used monomers include HEMA, acrylamide (AAm), vinyl alcohol
(VA), and siloxane derivatives. These monomers can be polymerized
over a silanized glass or anO2plasma-treatedplastic substrate in the pres-
ence of crosslinkers using photoinitiators such as 2,2-dimethoxy-2-
phenylacetophenone (DMPA), or thermal initiators such as N,N,N′,N′-
tetramethylethylenediamine (TEMED) (Tsangarides et al., 2014). A
range of functional groups can be added to the monomer mixture to cre-
ate specificity for target analytes. These include carboxylic acid (CA),
crown ethers, 8-hydroxyquinoline, porphyrin, and phenyl boronic acid



Fig. 1.Holographic sensors. (a) Themodulation of Bragg diffraction gratings in reflection holographic sensors as a function of pH. An increase in pH swells the hydrogelmatrix and expands
the lattice spacing of the grating, shifting the diffracted light to longer wavelengths. (b) Fabrication of holographic sensors by silver halide chemistry and laser writing. (c) Colorimetric
response of holographic carboxylated pHEMA pH sensor. Reprinted with permission from Yetisen et al. (2014a). Copyright, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (d) 8-
hydroxyquinoline-functionalized Pb2+ ions. Reprintedwith permission fromYetisen et al. (2015a). Copyright, American Chemical Society. (e) pHEMAethanol sensor. Reprintedwith per-
mission from Yetisen et al. (2014g). Copyright, The Royal Society of Chemistry. (f) Poly(acrylamide-co-vinylalcohol) humidity sensor with image displaying capabilities. Reprinted with
permission from Naydenova et al. (2008). Copyright, American Institute of Physics.
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derivatives (Kabilan et al., 2004; Marshall et al., 2003; Mayes et al., 2002;
Yetisen et al., 2014g). Functional groups can also be introduced after poly-
merization through aN,N'-dicyclohexylcarbodiimide (DCC)-initiated con-
densation reaction by forming amide linkages (Yetisen et al., 2015a).
Alternatively, sensitivity to analytes can also be achieved by introducing
nanoparticles (zeolites) to the monomer mixture (Leite et al., 2010a,b;
Zaarour et al., 2014).

The fabrication of holographic sensors involves forming diffraction
gratings in the hydrogel matrix. Depending on the hydrophilicity of
the polymer matrix, silver halide chemistry, high-energy laser pattern-
ing, or multilayer photopolymerization can be used to record the pho-
tonic structure. The early holographic sensors were recorded by silver
halide chemistry (Millington et al., 1996). In gelatin emulsions, silver
halides are prepared when the gelatin is molten in aqueous conditions,
and coated over a substrate as thin film. However, this strategy is not
universally applicable due to the immiscibility of some monomer spe-
cies with water. Hence, a diffusion method was developed for doping
hydrogel matrixes with Ag+ ions (Blyth et al., 1999). Typically, under
safelighting, Ag+ ions are converted to AgBr nanocrystals using aqueous
LiBr in the presence of photosensitizers (Marshall et al., 2003). Subse-
quently, the recording medium is exposed to holographic laser light in-
terference pattern to produce a latent image, which can be later
converted to Ag0 nanoparticles using a photographic developer
(Fig. 1b).

Holographic sensors can also be recorded by using intense pulses of
laser light (Yetisen et al., 2014e). For example, high-energy frequency
doubled Nd:YAG (Nd–Yttrium–Aluminum–Garnet) nanosecond (ns)
pulsed lasers or other high-energy lasers can be used to create reflection
holograms (Martinez-Hurtado et al., 2010). The typical laser energy out-
put of such lasers is 300 mJ with a pulsed laser operating at 532 nm.
However, low-cost Q-switched lasers for tattoo removal can also be
used. In contrast to silver halide holography, high-energy patterning
does not require formation of silver halide nanocrystals. This fabrication
method consists of the impregnation of the hydrogel matrix with a
light-absorbing material and highly-intense laser exposure of the re-
cording media to form diffraction gratings. For example, Ag+ ions can
be perfused into the hydrogel matrix, and reduced in situ using a photo-
graphic developer to Ag0 nanoparticles (Ø = 50–100 nm). Nanoparti-
cles of this size absorb in a wavelength range overlapping with the
laser emission wavelength at 532 nm. Similarly, other metal nanoparti-
cles (i.e. gold or iron), pigments, dyes, and carbon nanotubes can be
used to produce the gratings (Vasconcellos et al., 2014; Zhao et al.,
2015a). The interaction of laser light with nanoparticles might result
in reduction of particle size, oxidation, modification in the crystal struc-
ture or morphology, further crosslinking, or diffusion in the antinode or
node regions, which may contribute to reorganizing the nanoparticles
in the hydrogel matrix (Yetisen et al., 2014a).

Holographic sensors can also be constructed using photopolymers
(Mikulchyk et al., 2014). A significant advantage of photopolymers
over silver halide chemistry and high-energy patterning is the ability
to achieve high diffraction efficiency. Photopolymer-based holographic
sensors are typically constructed from AAm and VA (Mikulchyk et al.,
2013; Naydenova et al., 2008, 2009). To fabricate the hologram, a mix-
ture of monomers, crosslinker, photoinitiator and sensitizers are coated
over a substrate. The resultinghydrogelmatrix is exposed to an interfer-
ence pattern to create amultilayer photonic structure.When the light is
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absorbed at the antinode regions of the standing wave, the monomers
undergo free radical chain polymerization. Hence, this process locally
changes the refractive index and the polarization of the molecules.
The spatial variation in the intensity of the interference pattern is re-
corded as a variation of refractive index.

Holographic sensors have been utilized to sense ions, metabolites,
enzymes, drugs, microorganisms, and other clinically relevant stimuli
(Yetisen et al., 2014f) (Table 1). Earlier research in holographic sensors
focused on the development of pH sensors (Marshall et al., 2003).
Functionalization with acidic or basic groups allowed the hydrogel ma-
trix to swell and shrink due to the change in Donnan osmotic pressure
as the pH of the system was varied (Fig. 1c). The monomers that can
be incorporated in holographic pH sensors include methacrylic acid
(MAA), trifluoromethyl propenoic acid (TFMPA), dimethylaminoethyl
methacrylate (DMAEM), and vinyl imidazole to detect the pH from 2.0
to 9.0 to achieve 0.01 pH unit sensitivity. A limitation of hydrogel-
based pH sensors is that they are affected by changes in ionic strength.

Holographic sensors have been utilized in the quantification of
mono/divalent metal ions in clinical chemistry. Holographic sensors
were functionalized with methacrylated crown ethers to sense K+

ions (Mayes et al., 2002). A holographic sensor containing 18-crown-6
(50 mol%) allowed sensing K+ ions (≤30 mM) within 30 s. Recently,
porphyrin derivatives were incorporated into holographic sensors for
the detection of divalent metal ions (Yetisen et al., 2014g). Holographic
sensors consisting of porphyrin derivatives as chelating agents
responded to Cu2+ and Fe2+ ions within the concentration range of
0.05–1.00 mM in 30 s. However, these sensors were insensitive to diva-
lent metal ions below 10 mM (Yetisen, 2015c). The same sensors were
also used to sense alcohols as the concentration of ethanol was varied
from 4 to 10% (v/v) (Fig. 1d). Another recent holographic sensor featur-
ing 8-hydroxyquinoline (8HQ) as a chelating agent for Pb2+ ions was
shown to have a dynamic range of 0.1–10.0 mMwith a limit of detection
of 11.4 μM (Fig. 1e) (Yetisen et al., 2015a). Holographic sensors incorpo-
rating boronic acid derivatives were shown to be sensitive to glucose. 3-
Table 1
The quantification capabilities of holographic sensors in medical diagnostics.

Stimulus Recognition group

Trypsin (μg mL−1) Gelatin degradation
Water content in solvents (ppm) Matrix interaction
Alcohol (%) Matrix interaction
K+ ions (mM) 18-crown-6
pH CA

Glucose (mM) Phenylboronic acid

Ionic strength (mM) Charged sulphonate and quaternary ammonium
Penicillin G (mM) Penicillinase
Urea (mM) Urease
Ca2+ (μM) Iminodiacetic acid, nitrilotriacetic acid

Lactate (mM) Phenylboronic acid
Calcium dipicolinate (mM) Acid-soluble spore proteins
Humidity (%, RH) Matrix interaction
Edrophonium (μM) Acetylcholinesterase and CA
Alkanes, alkenes, alkynes (% v/v) Matrix interaction
Co3+ (mmol l−1) Ionogens
Organic solvents (%, v/v) Matrix interaction
Testosterone (μM) Molecular imprinting
Cu2+, Fe2+ (1 M) Porphyrins
Ammonia (NH3) (%, v/v) Nafion
Pb2+ 8-Hydroxyquinoline
(acrylamido)phenylboronic acid (3-APB) (pKa = ∼8.8) binds to carbohy-
drates by forming reversible covalent bonds through its cis-diol units
(Kabilan et al., 2004, 2005). The principle of operation of the holographic
glucose sensors was based on the change in Donnan osmotic pressure,
which shifted the Bragg peak to longer wavelengths in the presence of
carbohydrates (Yetisen, 2015b).

Holographic sensors also have the capability to incorporate images
(Naydenova et al., 2008). Holographic humidity sensors were fabricated
in AAm photopolymer in Denisyuk reflection mode (Fig. 1f). After
breathing over the holographic sensor, the change in the diffracted
light provided a qualitative and quantitative readout of the relative hu-
midity (RH) in the environment. The color change was observed within
seconds after changing the RH, and this process was reversible. Addi-
tionally, images can be incorporated within holographic sensors that
display a different image upon interacting with a target analyte.

2.2. Crystalline colloidal array sensors

Periodic CCAs consisting of microparticles can restrict the propaga-
tion of photons within a certain range of wavelengths. In nature, such
structures are found in opals, inwhich amorphous silica particles are pe-
riodically arranged. The optical characteristics of the diffracted light
from colloidal crystals depend on the particle order, size, and the refrac-
tive index of the particles and their surroundingmedium. CCAs embed-
ded in hydrogels represent a colorimetric and reversible sensing
technology for applications in IVD (Zhao et al., 2010a). CCAs consist of
three-dimensionally ordered polystyrene (PS) or poly(methyl methac-
rylate) (PMMA) particles that self-assemble into a body-centered
cubic (BCC) or face-centered cubic (FCC) lattice due to electrostatic re-
pulsion between the monodisperse, highly charged particles. With a
mesoscopic periodicity of 0.1–1.0 μm, the CCA forms single crystals
that Bragg-diffract visible light (Fig. 2a) (Carlson and Asher, 1984;
Rundquist et al., 1989). The diffracted light is monochromatic and can
be tuned in the visible spectrum (Fig. 2b).
Dynamic range Sensitivity Ref.

b20 0.04 Millington et al. (1996)
b20,000 120 Blyth et al. (1996)
b100 0.3 Mayes et al. (1999)
b30 1 Mayes et al. (2002)
2–9 0.0006 Marshall et al. (2003),

Tsangarides et al. (2014),
Yetisen et al. (2014a)

b375 0.09 Domschke et al. (2006),
Horgan et al. (2006),
Kabilan et al. (2004, 2005),
Kraiskii et al. (2010),
Lee et al. (2004a),
Worsley et al. (2007, 2008),
Yang et al. (2006, 2008),
Yetisen et al. (2014d)

b500 0.08 Marshall et al. (2004b)
b1–25 0.05 Marshall et al. (2004a)
b50 0.15 Marshall et al. (2004a)
b70 2.2 Bhatta et al. (2007),

Gonzalez et al. (2005)
b12 0.1 Sartain et al. (2006, 2008)
N50 40 Bhatta et al. (2008)
10–80 1 Naydenova et al. (2008, 2009, 2011)
b300 0.4 Tan and Lowe (2009)
b100 0.5 Martinez-Hurtado et al. (2010, 2011)
b10 0.1 Kraiskii et al. (2010)
b10 0.1 Yetisen et al. (2014g)
b10 1.0 Fuchs et al. (2013, 2014)
b1.0 0.1 Yetisen et al. (2014g)
0.19–12.5 2 Hurtado and Lowe (2014)
0.1–10.0 mM 11.4 μM Yetisen et al. (2015a)
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The synthesis of monodisperse, highly charged PS or PMMA spheres
(100 nm) was carried out through emulsion polymerization (Reese
et al., 2000) (Fig. 2c). A solution (~8 wt.% colloids) was combined with
a monomer mixture and allowed to equilibrate (Fig. 2d). CCAs were
then fabricated by the co-polymerization of monodisperse nanoparti-
cles and monomers to immobilize the suspension (Fig. 2e) (Asher
et al., 1994). The CCA lattice spacing and subsequent diffracted wave-
length could be tuned by varying the concentration of the colloidal
nanoparticle solution (Fig. 2f). For example, a change of 0.5% in the hy-
drogel volume shifted the diffracted peak by ~1 nm (Holtz and Asher,
1997).

By incorporating different recognition sites, CCAs have been used for
several applications in IVD. The CCA materials can be functionalized
with chelating agents and ligands. Hydrogels consist of greater than
85% water, which allows target analytes to freely diffuse into the CCA
matrix to bind to the recognition group with diffusion constants that
can be approximated by those in water (Asher et al., 2002). As the
recognition group in the hydrogel matrix binds to target analytes, the
Donnan osmotic pressure of the hydrogel matrix increases (or de-
creases) by absorbing more (or less) water. The changes the hydrogel
volume is thus directly proportional to the concentration of the target
analyte (Holtz and Asher, 1997; Holtz et al., 1998). This volume change
shifts the diffracted Bragg peak to longer wavelengths, which can be
correlated with the analyte concentration. The color change can be
semi-quantitatively interpreted by eye, or quantitatively analyzed
using a spectrophotometer. Therefore, CCAs offer a practical and
equipment-free approach to IVD that can be used in the field to obtain
rapid analyses.

The volume-phase transition of poly(AAm-co-CA) CCA in response
to pH and ionic strength changes has been monitored (Lee and Asher,
2000). The pH sensor operated from pH 2–11 and shifted the Bragg
peak ~ 250 nm. The shift due to Na+ ions (10 mM) was 200 nm at
Fig. 2. Crystalline colloidal array (CCA) sensors. (a) The principle of operation that obeys Bragg'
array. Scale bar = 2 μm. Reprinted with permission from Sai et al. (2013). Copyright, the Royal
through emulsion polymerization that (d) undergo electrostatic repulsion and self-assemble to
CCA. (f) The diffracted light from CCAs can be tuned in the visible spectrum by changing the c
Copyright, American Chemical Society. (g) Colorimetric response of molecularly imprinted CCA
with permission from Xue et al. (2014b). Copyright, The Royal Society of Chemistry.
pH 8.1. A volume-phase model was also developed to predict pH and
ionic strength dependence of hydrogel swelling. This enabled the design
of materials for optimal pH and ionic strength sensors by using func-
tional groups that ionize in various pH ranges or that show no pH de-
pendent ionization.

Crown ethers were attached to the pAAm CCA hydrogel to selective-
ly bind Pb2+ ions (Asher et al., 2002). The measurement of blood lead
concentration has diagnostic applicability in plumbism (lead poison-
ing). The reference range for acceptable blood lead concentration
(BLC) is 0.5–1.0 μmol/L (Kratz, 2004). In lead poisoning, BLC exceeds
0.97 mmol/L (Haslam, 2003). Lead encephalopathy, more common in
children than adults, is diagnosed at blood lead concentrations from
4.83–14.49 mmol/L (Trope et al., 2001). The immobilization of Pb2+

ions in the CCA increased the influx of their counterions, which in-
creased the Donnan osmotic pressure and swelled the hydrogel in pro-
portion to the concentration of bound Pb2+ ions (Asher et al., 2002). A
red-shifted Bragg diffraction acted as a sensor for quantification of the
concentration of Pb2+ ions in low ionic strength solutions. However,
at high ionic strength, the Donnan osmotic pressure from Pb2+ ion che-
lation was saturated by non-specific interaction with other cations in
the solution, and the sensors became ineffective. To overcome this chal-
lenge, the CCAswere incubated in a sample solution, and their transient
response was measured after rinsing the sensor with pure water. Since
the non-complexed counterions diffuse out of the CCA matrix more
quickly than the bound Pb2+ ions, this transient diffraction shift was
proportional to the concentration of Pb2+ ions. CCAs sensed Pb2+ ions
in high ionic-strength environments such as body fluids with a detec-
tion limit of 100 ppb. For lead concentrations greater than 10 μM, the
CCA color change was visible to the eye. To detect lower concentrations
of Pb2+ ions in high ionic strength, an optode sensing devicewas devel-
oped (Reese and Asher, 2003). It consisted of a probe assembly contain-
ing the CCA sensing material, a diode array spectrometer, and a fiber
s law. (b) Scanning electron microscopy image of CCAs showing face centered cubic (FCC)
Society of Chemistry. (c) Monodisperse, highly charged PS or PMMA spheres synthesized
form FCC lattices, with subsequent (e) monomer mixture photopolymerized around the

oncentration of the silica nanoparticles. Reprinted with permission from Ye et al. (2011).
sensors as the concentration of p-nitrophenol was increased from 5 to 30 mM. Reprinted
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optic reflectance probe. The optodemight allow for the rapid removal of
non-complexed ions present in biological samples. Recently, a CCA sen-
sitive to thiocyanate ions (SCN−) was synthesized (Ma et al., 2013).
Polystyrene-co-poly(N,N-dimethylacrylamide) (PS-co-PDMAA) mi-
crospheres consisting of PS core and PDMAA shell were prepared
by emulsion polymerization (Xiao et al., 2004). To construct the
array, 3D self-assembly of a CCA was induced by centrifugation. Con-
sequently, the CCA was tested in a plate groove. As the concentration
of SCN− ions increased from 8.6 to 860 nmol/g, the Bragg peak line-
arly red-shifted 290 and 60 nm, respectively. The red shifts of other
anions (8.6 nmol/g) were greater than 95 nm. While this assay pro-
vided broader operational wavelength ranges as compared to the po-
lymerized CCAs, this assay required centrifugation for each
experiment.

pAAm CCAs containing creatinine deiminase enzyme and 2-
nitrophenol titrating groupwere used to detect and quantify creatinine,
a marker of renal dysfunction, in human blood serum samples (Sharma
et al., 2004). When creatinine diffused into the hydrogel matrix, it hy-
drolyzed by the creatinine deiminase, increasing the local pH, which
deprotonated a second recognition agent, 2-nitrophenol. The
deprotonated phenolate exhibited enhanced solubility, swelled the hy-
drogel matrix and red-shifted the Bragg peak. The changes in the Bragg
peak position allowed the quantification of creatinine concentration
with a physiologically relevant limit of 6 μM (Sharma et al., 2004).

Organophosphorus compounds are potent inhibitors of nervous
system function and are used worldwide in agriculture, creating a
need for a rapid, low-cost method of their detection (Radic et al.,
1993; Dziri et al., 1998). The organophosphorus compound parathion
was detected as low as fM using CCA sensors containing acetylcholines-
terase (AChE) (Walker and Asher, 2005). AChE bound organophospho-
rus compounds irreversibly and created anionic phosphonyl species,
which increased the Donnan osmotic pressure in the hydrogel matrix
that red shifted the Bragg peak. Since the binding was irreversible, the
AChE-CCAs acted as dosimeters for parathion.

Elevated concentrations of ammonia in the blood damages the
central nervous system and inhibits the generation of postsynaptic po-
tentials (Hazell and Butterworth, 1999; Lockwood, 2004). Routine
screening of ammonia blood concentration of at-risk patients is a clini-
cal need that could prevent neurological damage. (Bachmann, 2003).
Hyperammonemia is commonly associated with cirrhosis and chronic
alcoholism, in which the liver cannot adequately clear out ammonia
(Shimamoto et al., 1999). An ammonia sensor that quantified the con-
centration of ammonia in human blood serum in the physiological
range of 50–350 μM was synthesized by binding 3-aminophenol to
the poly(hydroxyethyl acrylate) (pHEA) CCA backbone (Kimble et al.,
2006). Ammonia reacted with hypochlorite and the pendant
aminophenol in the Berthelot reaction to create benzoquinone
chlorimine, which reacted with another pendant aminophenol to form
a crosslink. The crosslinking of the hydrogel caused thematrix to shrink,
and blue-shifted the diffracted light.

Recently, a CCA sensor has been developed to detect enzyme activity
by tethering a target peptide (LRRASLG) to the hydrogel matrix as a
substrate for protein kinase A (PKA) (MacConaghy et al., 2015). The
peptide became phosphorylated by PKA, resulting in additional nega-
tive charges in the hydrogel and the creation of a Donnan potential
which changed the hydrogel volume and subsequently shifted the
Bragg diffraction. By eliminating extraneous charges in the hydrogel
through functionalization with azide-alkyne click chemistry, the
hydrogels were able to detect phosphorylation in 30 min and had a
sensitivity limit of 0.1 U/μL PKA in 2 h (MacConaghy et al., 2015).

The diagnosis and treatment of diabetes also require rapid sensors
that can be produced at low-cost, particularly in developing countries.
Phenyl boronic acid derivatives form reversible covalent bonds with
carbohydrates through cis-diols (Hisamitsu et al., 1997; Zhang et al.,
2013a). Boronic acid (pKa=8.8) is in uncharged and trigonal configura-
tion below pH 7.0; however, at pH values greater than its pKa value,
boronic acid is in tetrahedral coordination form (Springsteen and
Wang, 2002). The tetrahedral form can bind to cis-diols of carbohy-
drates, resulting in boronate ionization. This binding mechanism has
been utilized in CCAs for sensing carbohydrates (Asher et al., 2003). A
CCA was synthesized from copolymerization of AAm and boronic acid
derivatives. The sensor produced a Bragg peak shift of 60 nmas the con-
centration of glucose was increased to 10 mM (pH 8.5, 2 mM Tris–HCl
buffer). In another study, CCA embedded in phenyl boronic acid deriva-
tive functionalized pAAm–poly(ethylene glycol) PEG, and a pAAm-15-
crown-5 matrix was utilized to quantify the concentration of glucose
in solutions (Alexeev et al., 2003). The complexation of phenyl boronic
acids and the cis-diols of glucose molecules increased the hydrogel
crosslinking, and blue-shifted the Bragg peak. For example, a boronic
acid-pAAm-PEG CCA sensor produced a blue Bragg peak shift by
60 nm for 8 mM glucose (pH 8.5, 2 mM Tris–HCl buffer) while the sen-
sor produced a 100 nm shift at pH 9.5 (Fig. 2g) (Alexeev et al., 2003).
Table 2 shows the dynamic ranges and sensitivities of CCA sensors.

Molecularly imprinted polymers (MIPs), which have been used in
chemical and biological sensors as selective recognition elements with
a high affinity for a target molecule, can be used to create receptor
sites in CCAs. MIPs contain specific recognition sites that are comple-
mentary in size, shape and functional groups to the template molecules
and involve an interaction mechanism based on molecular recognition
(Wulff, 1995). For example, CCA sensors incorporating MIPs were
used for the detection of bisphenol A (BPA), a suspected endocrine-
disruptor which adversely affects human growth and development
(Guo et al., 2012). Molecularly imprinted monodisperse PMMA nano-
particles were prepared with suspension polymerization, resulting in
numerous nanocavities distributed in the PMMA spheres that provided
specific recognition sites for BPA. Bymeasuring the change in diffraction
intensity corresponding to BPA concentrations, the sensor can detect
between 1 ng/mL and 1 g/mL (Guo et al., 2012). Similarly, the combina-
tion of MIP and CCA has also been used for the detection of diethylstil-
bestrol (DES), which has clinical utility in testing the risk of breast
cancers and clear cell adenocarcinoma of the cervix (Palmer et al.,
2006; Sai et al., 2013). The diffraction efficiency of the CCA decreased
in 7 min upon increasing the DES concentration from 2 ng/mL to
8.2 mg/mL with no obvious changes in efficiency for DES analogues
(Sai et al., 2013). Furthermore, molecularly imprinted CCAs have been
used to measure the concentration of p-nitrophenol (Xue et al.,
2014b). As the concentration of p-nitrophenol was increased to
30mM, the Bragg peak of the CCA shifted 55 nm to longer wavelengths,
showing a detection limit of 1 mM. The color change was visible to the
eye (Fig. 2g).

CCAs that can maintain their color independent of the observation
angle have been synthesized (Yeo et al., 2015). Monodisperse double
emulsions encapsulating CCAs were prepared using a microfluidic
device. Inducing crystallization of highly-charged PS particles in the
core of double emulsions through osmotic annealing allowed creating
CCAs with improved angle tolerance. This approach also enabled tuning
the shape and crystallinity of the CCA supraparticles. These
supraparticles were subsequently fixed in an elastomeric matrix. How-
ever, this approach produced broadband Bragg diffraction at low dif-
fraction efficiency, limiting the practicality for sensing applications.
Recently, CCAs with uniform, Janus, multicomponent, or core-shell
inner structures have been reported (Zhao et al., 2010b, 2014). The
spherical symmetry of such “bead-shaped” CCAs enables their PBGs to
be independent of the rotation angle under illumination of the surface
at a fixed incident angle. Hydrogel DNA-responsive photonic beads
were used for a label-free DNA detection (Zhao et al., 2010c). The hy-
bridization of target DNA and the crosslinked single-stranded DNA
shrank the hydrogel and blue shifted the Bragg diffraction peak.

Defects have been introduced to CCA as recognition sites by control-
ling the population and arrangement of nanoparticles through the crea-
tion of gaps, points, lines, planes, and grain boundaries (Arsenault et al.,
2006). Such defects allowed for engineered functionality for integrated



Table 2
Crystalline colloidal array sensors.

Stimulus Recognition group Dynamic range Sensitivity Ref.

Pb2+ ions 18-crown-6 b7.5 mM 0.5 μmol/L Asher et al. (2002)
Urea Urease 0.05 mM–0.5 mM N/A Zeng et al. (2002)
Glucose Phenylboronic acid b30 mM 50 μM Asher et al. (2003), Zhang et al., (2013a)
Creatinine Creatinine deiminase b1 mM 0.01 mM Sharma et al. (2004)
Temperature Poly(N-isopropylacrylamide) 25–40 N/A Lyon et al. (2004)
Parathion Acetylcholinesterase b42.6 pM 4.26 fM Walker and Asher (2005)
Ammonia Berthelot reaction 50–300 μM 50 μM Kimble et al. (2006)
Ethanol Matrix interaction b100% (v/v) N/A Chen et al. (2011)
Hg2+ ions Urease–urea hydrolysis b20 ppb 1 ppb Arunbabu et al. (2011)
Bisphenol A Imprinted cavity b1 μg/mL 1 ng/mL Guo et al. (2012)
pH Matrix interaction 2.8–9.5 units 0.05 units Jiang et al. (2012)
Cu2+, Ni2+, Zn2+ ions 8-hydroxyquinoline b1.6 μM 0.08 Jiang et al. (2012)
Cd2+ ions Thiourea b10 mM 0.01 mM Lin and Yu (2012)
Avidin Biotin 1 mg/mL 580 nm/(mg mL−1) Zhang et al. (2013b)
Diethylstilbestrol Imprinted cavity 2 ng mL−1–8 μg mL−1 N/A Sai et al. (2013)
Protein kinase A Peptide LRRASLG 10 U/μL 0.1 U/μL MacConaghy et al. (2015)
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optics. For example, creation of a single row ofmissing spheres in a CCA
provided a path for light guiding through the periodic lattice. Addition-
ally, a bend was created in the waveguide on the order of the wave-
length of the light and a bend radius on the order of one particle
diameter. This approach enabled the creation of miniaturized circuit
patterns that might find application in integrated optics and sensors.
Defects in CCA could be introduced by photolithography, direct writing
in confocal microscopy, and high-energy beam surface writing. Air core
waveguideswere constructed in silicon inverse opals by inserting linear
air cavities in the interior of a lattice of silica spheres (Vekris et al.,
2005). This process involved photolithographically printing a pattern
of photoresist lines on the colloidal surface, and then depositing silica
spheres to cover the photoresist layer. Next, this layer was removed to
create a pattern of linear air cavities in the CCA. Advanced projection li-
thography achieved a resolution on the order of 250 nm. Direct writing
by laser confocal microscopy involved infiltrating a CCA with a mono-
mer solution, and then scanning the focal volume through the interior
of the CCA to locally polymerize the monomer solution. The
unpolymerized monomer solution was then removed from the system
to leave a polymeric defect in the CCA (Lee et al., 2002; Pruzinsky and
Braun, 2005). Linear polymeric patterns with a linewidth on the
order of 2 μm at a depth of 0.5 μm were achieved. High-energy beam
writing of linear patterns on the surfaces of CCAs have also been demon-
strated (Tétreault et al., 2006). This process involved direct writing of
laser or e-beam across the surface of the CCA to selectively remove ma-
terial or induce physical changes. For example, ion lasers were used to
change the local recrystallization of amorphous Si to nanocrystalline
Si. This process reduced the refractive index of the material from 4.0
to 3.6. Furthermore, irradiation of PMMA spheres with e-beam cleaved
bonds to cause solubility in an organic solvent (Ferrand et al., 2003).
Subsequently, the exposed materials were removed in a development
step to create structural changes.

Planar defects in CCAs can serve as optical dopants that decrease
the intensity of Bragg peak at specific wavelengths associated with
pseudogap frequencies. The wavelength of defect states within the
pseudogap depends on the thickness of the dielectric slab, and its refrac-
tive index (Tétreault et al., 2004). A 2D defect consisting of a monolayer
of spheres sandwiched between two opal layers with different diame-
ters were created by the Langmuir–Blodgett technique (Egen et al.,
2003; Massé et al., 2006; Zhao et al., 2003). Such defects have also
been introduced by spin coating spheres or nanocrystalline aggregates
in CCAs (Pozas et al., 2006). Furthermore, chemical vapor deposition
(Palacios-Lidón et al., 2004; Tétreault et al., 2004) and polyelectrolyte
multilayers (Fleischhaker et al., 2005a) have been used to introduce
these defects. Polyelectrolyte multilayers were incorporated in
photonic crystals by layer-by-layer deposition or transferring the layer
over the surface of the photonic structure by using a PDMS stamp,
followed by growing a layer of CCA on top of the embedded structural
defect. These polyelectrolyte defect layers were functionalized with
photochemically active azobenzene polyelectrolytes and redox-active
polyferrocenylsilane (PFS) metallopolyelectrolytes. The polyelectrolyte
incorporating azobenzene was modulated based on photochemical
trans-cis isomerization and thermal back-isomerization of the azo
group (Fleischhaker et al., 2005a). The defect transmission state of the
redox active polyferrocenylsilane was modulated by oxidizing and re-
ducing the ferrocene units (Fleischhaker et al., 2005b). The polyelectro-
lyte layers might allow the incorporation of dyes, quantum dots,
colloids, and biopolymers such as proteins and DNA (Schönhoff,
2003). For example, CCAs were designed with planar polyelectrolyte
defects that incorporated DNA and polypeptides (Fleischhaker et al.,
2006). These sensors were used tomonitor DNA conformational chang-
es and the enantioselective intercalation of daunorubicin.

2.3. Inverse opal sensors

Inverse opals are constructed by templating monodisperse spheres,
typically consisting of silica, PS, PMMA, or block co-polymers (Aguirre
et al., 2010). Close-packed arrays from suspended particles can be ob-
tained through centrifugation, sedimentation, vertical deposition, and
physical confinement in hydrogels (Furumi et al., 2010; Xia et al.,
2000). These close-packed arrays serve as a template that allows infil-
tration, and the spheres are removed from the medium by pyrolysis
and etching (Fig. 3). Inverse opals can be constructed in hydrogel
matrixes that are functionalizedwith covalently linked chelating agents
or ligands that can specifically bind to target analytes. Such interactions
change the lattice spacing and the refractive index of the interstitial
spaces and the hydrogel medium. The physical changes in the hydrogel
matrix can be read through the diffracted or transmitted light.

PNIPAAm is a widely studied thermosensitive hydrogel that be-
comes hydrophobic at 32 °C by undergoing a phase transition from
swollen to dehydrated state (Schild, 1992). An inverse opal PNIPAAm
film was used as an optical filter by varying the temperature, which
shifted the position of the Bragg peak and/or its intensity (Ueno et al.,
2007). The thermosensor was prepared by copolymerizing NIPAAm,
and MAA. As the temperature was increased from 16 to 31 °C, the
Bragg peak of the poly(NIPAAm-co-CA) matrix decreased from 660 to
340 nm (Fig. 3d). The shift to shorter wavelengths originated from the
shrinkage of the hydrogel matrix, which decreased the FCC lattice spac-
ing. Another inverse opal temperature- and cation-sensitive sensor was
templated from a silica sphere array by copolymerizing NIPAAm, N,N-
methylenebisacrylamide, and 4-vinylbenzo-18-crown-6 (Saito et al.,
2003). At 36 °C, K+ ions (40mM) shifted the Bragg peak 200 nm to lon-
ger wavelengths (Fig. 3e). However, the sensor was also sensitive to
changes in ionic strength. The color range of inverse opal hydrogels



Fig. 3. Inverse opal sensors. (a) The fabrication of inverse opal structure by the self-assembly of a colloidal crystal template, (b) infiltration by a monomer mixture, polymerization, and
(c) the removal of colloidal crystal template, scale bars = 500 nm. Reprinted with permission from Kim et al. (2013), Copyright, Macmillan Publishers Ltd. (d) PNIPAAm-co-CA
thermosensors. Reprintedwith permission fromUeno et al. (2007), Copyright,Wiley-VCHVerlag GmbH&Co. KGaA,Weinheim. (e) PNIPAAm-co-4-vinylbenzo-18-crown-6 K+ ion sensor.
Reprinted with permission from Saito et al. (2003), Copyright, The Royal Society of Chemistry.
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can be tuned by controlling the concentration of the crosslinker and the
size of the templating spheres (Takeoka and Watanabe, 2003; Takeoka
et al., 2003). Humidity-sensitive pAAm inverse opals were also devel-
oped (Barry and Wiltzius, 2006). When the relative humidity was
changed from 20 to 80%, the Bragg peak red shifted from 538 to
580 nm. Recently, humidity-sensitive silk-fibroin inverse opalswere de-
veloped (Diao et al., 2013). The humidity-induced cyclic contraction of
silk fibroin enabled continuous modulation of the diffracted color. pH-
sensitive inverse opal hydrogels were also synthesized from HEMA
and acrylic acid (AA) (Lee and Braun, 2003). The range of Bragg peak
shift was controlled by changing the concentration of the AA and the
crosslinker. The peak red shifted 300 nm as the pH was increased
from 4 to 7, showing a sensitivity of 0.01 pH units.

Inverse opals have been utilized to sense clinically-relevant
analytes. Glucose-sensitive inverse opals were synthesized in
pHEMAmatrixes containing 3-APB (Lee et al., 2004b). Phenylboronic
acid reversibly binds to 1,2-cis diols such as glucose, which increases
the degree of ionization. This swells the hydrogel matrix by an influx
of water and ions, and subsequently red shifts the Bragg peak. In-
verse opals were optimized to respond to concentrations within
the clinical range (b7.0–15.0 mM) of glucose in blood to indicate hy-
perglycemia (Nakayama et al., 2003). The diffracted light shifted
from green to yellow/orange to red as the concentration of glucose
was changed from 5.0 to 10.0 to 15.0 mM. In another study, inverse
opals were used to sense alcohols (Pan et al., 2012). A single crystal-
line inverse opal hydrogel was fabricated by PS opal templating in
pAAm. Its diffraction spectra changed from about 640 to 450 nm
when the alcohol (methanol, ethanol, or n-propanol) concentration
was increased. This sensor was also responsive to the variation in
the concentration of PEG. Inverse opals have also been used to detect
ammonia (Liu et al., 2012). TiO2 inverse opals were fabricated by in-
filtration with polyaniline. The sensor changed its color from red to
green reversibly in response to ammonia. This change was observed
by eye, which may have clinical utility for monitoring ammonia
vapor, such as from breath (Shimamoto et al., 1999). Furthermore,
dimethyl aminopropyl methacrylamide was incorporated in inverse
opals as a functional monomer to sense CO2 (Hong et al., 2013). After
exposure to CO2, the tertiary amine groups in this monomer were
protonated and formed ion pairs with CO2. This swelled the hydrogel
matrix and red shifted the diffracted light. Non-invasive CO2 sensors
could have applications in monitoring of respiratory physiology and
pathologies (Folke et al., 2003). Table 3 shows the inverse opal sen-
sors and their detection capabilities.
2D monolayer inverse opal hydrogels are promising candidates for
sensing, and they have a number of advantages over 3D inverse opal
hydrogels (Li and Lotsch, 2012; Xue et al., 2014a). Their advantages
include (i) faster and simpler formation of the 2D array template
through self-assembly, (ii) a more stable ordering of the 2D array tem-
plate, whichmakes it easier to introduce themonomer solution into the
template, and (iii) the optical characterization that can be achieved by
analyzing Debye diffraction ring (Tikhonov et al., 2012).

2.4. Porous silicon sensors

Photonic biosensors have been fabricated from porous silicon
(DeLouise et al., 2005). A single crystal silicon wafer was electrochemi-
cally etched using hydrofluoric acid. The diameter (20–150 nm) and
morphology of pores in n-type silicon were controlled by changing the
etch parameters such as doping level, current density, and electrolytes.
The resulting structures acted as Bragg gratings that could be tuned
from visible to near-infrared regions of spectrum. Hydrogel-supported
membranes were fabricated by either laminating the structure with a
crosslinked hydrogel or depositing a monomer solution over the pores
prior to crosslinking. Functionalizing the internal surface of the pores
by bio-receptors and hydrogels allowed changing the position of the
Bragg peak, which was correlated with concentration values of a target
analyte. For example, pAAmwas functionalized with amine groups and
was incorporated into theporous silicon. Changes in the effective refrac-
tive index of disulfide crosslinked hydrogel in porous siliconweremon-
itored upon exposure to tris(2-carboxyethyl) phosphine (TCEP). After
submerging the photonic silicon in TCEP (50mM) for 15min and drying
for 5 min, the reflectance peak shifted ~100 nm to shorter wavelengths,
producing visible color changes. (Bonanno and DeLouise, 2010). For de-
tecting biomarkers in whole blood, amine-terminated porous silicon
surface was functionalized with sulfosuccinimidyl-6-(biotinamido)-6-
hexanamido hexanoate, and the sensor response was tested with bio-
tinylated anti-rabbit IgG fromgoat (Bonanno andDeLouise, 2007). An in-
crease in the concentration of IgG from 1 to 10 mg mL−1 produced
~3.3 nm wavelength shift. Additionally, this approach offered intrinsic
size-exclusion filtering of erythrocytes, which enhanced signal
differentiation.

2.5. Block copolymer sensors

Block copolymers consist of two or more chemically distinct macro-
molecules that are joined together by covalent or non-covalent bonds



Table 3
Inverse opal sensors and their detection capabilities.

Stimulus Recognition group Dynamic range Sensitivity Ref.

pH CA 2–7 0.01 Lee and Braun (2003), Xue et al. (2014a)
Glucose Phenylboronic acid b100 mM 0.l mM Lee et al. (2004b), Nakayama et al., (2003)
Relative humidity Matrix interaction 20–80% 1–10% Barry and Wiltzius (2006), Diao et al. (2013)
Temperature Matrix interaction 16–31 °C 2 °C Ueno et al. (2007)
Bisphenol A Molecular imprinting 10−8–1 μM 10−9 μM Griffete et al. (2012)
Cyanide Trifluoroacetyl b1 mM 10−4 mM Li et al. (2012)
3-Pyridinecarboxamide Molecular imprinting b10 wt.% 0.5 wt.% Yuan et al. (2012)
PEG in 2-propanol Matrix interaction 0–90 wt.% 10 wt.% Pan et al. (2012)
Ethanol, methanol, n-propanol Matrix interaction 0–90 vol% 10 vol% Pan et al. (2012)
Ammonia Polyaniline 1–4 (min) 30 nm/min Liu et al. (2012)
Glucose Glucose oxidase 1–12 mM 0.5 mM Jin et al. (2012)
Cholesterol Molecular imprinting 1 nM–10 μM 1 nM Zeng et al. (2012)
Cu2+ ions 4-Vinylpyridine N/A 50 mM Hong et al. (2012)
CO2 Amino groups 0–4.9 vol% 1 vol% Hong et al. (2013)
Acetate Thiourea 10 mM 1 mM Kado et al. (2013)
Ammonia Matrix interaction b100 vol% N/A Zhong et al. (2013)
Refractive index Gold nanoparticles 1.33–1.40 166 nm/RI unit Cai et al. (2013)
Organic solvents Matrix interaction 100 vol% N/A Cui et al. (2014)
Hg2+ ions CA 10–1000 μM 10 nM Zhang et al. (2014)
Avidin Biotin 75–10,000 nM 0.01 nm/nM Couturier et al. (2015)
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(Lynd et al., 2008; Kim et al., 2010). The blocks can be linear chains of
identical monomers or branched sequences of monomers. When the
blocks are physically incompatible, different macromolecules are
thermodynamically driven to self-assemble to reduce the contact be-
tween two immiscible regions (Fredrickson and Bates, 1996). Immisci-
ble block copolymers undergo a microphase segregation to form
nanostructures with dimensions ranging from 5 to 200 nm, and the
control over this process allows tuning of their physical properties and
morphology (Bockstaller et al., 2005; Klinger et al., 2013). Thermody-
namically incompatible homopolymers phase separate to minimize
the enthalpy of the system. However, in block copolymers, entropic
forces from the covalent linkages counterbalance the thermodynamic
forces driving separation (Bates and Fredrickson, 2008). In contrast to
the macrophase separation, the mobility of the copolymer is restricted
locally due to the covalent bonding in block copolymers. Unfavorable
monomer contacts and the tendency to minimize chain stretching
locally segregate layers (Bockstaller et al., 2005). The phase behavior
depends on three main factors: degree of polymerization, Flory-
Huggins interaction parameter, and the volume fraction of the block
(Fredrickson and Bates, 1996). Using block copolymers, 1-3D morphol-
ogies with different periodic lattice configurations can be achieved to
create optical gratings (Bates and Fredrickson, 1990; Matsen and
Bates, 1996). The polymer type, molecular weight, interaction parame-
ter and processing conditions such as the degree of polymerization de-
termines the morphology, such as lamellae, gyroid, cylindrical, or
spherical (Fig. 4a) (Hadziioannou and Skoulios, 1982).

Diblock copolymers have been used to construct Bragg gratings by
solvent casting polystyrene-block-poly(ethylene/propylene) (PS-b-PE/
P) (400 kg/mol) with a polymer dispersion index of 1.04 (Bockstaller
et al., 2001). This process created a periodic lamella structure with a
spacing of 200 nm. When illuminated with a white light source, the
Bragg grating diffracted light at 545 nm. Optical gratings can also be
prepared bymixing diblock copolymers with its constituent homopoly-
mers to swell the lamellar microdomains (Urbas et al., 1999). The
diblock copolymer/homopolymer allows tailorable lattice spacings,
and the use of low molecular weight components. However, the
production of optical gratings by self-assembly is limited due to incor-
rect size of domains needed for the optical ranges of interest, attainment
of long-range order, and field of view, or low diffraction efficiency
(Edrington et al., 2001). The intrinsic dielectric contrast between the
phases in block copolymer-based diffraction gratings is low, which
limits the bandgap achievable by block copolymer-based Bragg gratings
(Fink et al., 1999). For example, the refractive index contrast between
two phases of polystyrene-block-polyisoprene is 1.1. To improve the
dielectric contrast, the microdomains of diblock copolymers were
doped with nanoparticles (Bockstaller et al., 2001; Chiu et al., 2005,
2007). The surface of nanoparticles can be functionalized to induce
affinity to one of the phases of the block copolymer. For instance, PS-
coated Au0 nanoparticles with thiol-terminated ligands were synthe-
sized by the reduction of HAuCl4·3H2O in THF or two phase liquid
system (Brust et al., 1994; Yee et al., 1999). Another challenge with
diblock copolymers is that their absorptionmasks the diffractionwithin
the visible spectrum. Hence, the practical short wavelength limit of
diblock copolymers is ~300 nm since such systems have strong absorp-
tion in the UV region (Urbas et al., 2002). Furthermore, self-assembled
lamellae contain imperfections due to local phase separations and
inconsistent orientation of the localized lamellar geometries in symmet-
ric diblock copolymers (Edrington et al., 2001).

The diblock copolymer gratings have been functionalized to render
chemical-sensing capability. Polystyrene-b-quaternized poly(2-vinyl
pyridine) (PS-b-QP2VP) lamellar films were synthesized in a few
steps. PS-b-QP2VP (5%wt,Mn=190 kgmol−1-b-190 kgmol−1) in pro-
pylene glycol monomethyl ether acetate was spin-casted over a sub-
strate, followed by annealing the matrix in chloroform vapor (50 °C,
24 h) to form in-plane oriented lamellarfilms (Kang et al., 2007). Subse-
quently, P2VP blocks were quaternized and crosslinked using a mixture
of bromoethane and 1,4-dibromobutane (DBB) in hexane at (50 °C for
24 h). This process converted pyridine to pyridinium in the system.
The resulting structure contained a microdomain periodicity of
100 nm with a matrix thickness of 1–3 μm (Fig. 4b). When submerged
into an aqueous solution, the thickness of the diblock copolymermatrix
expanded to 15–20 μm.

Block copolymers can consist of polystyrene-block-polyacrylic acid
(PS-b-PAA), which comprises a hydrophobic PS block and pH-sensitive
hydrophilic PAA block. When illuminated with a white light source,
block copolymer sensors operate through themodulation of their lattice
spacing, and hence shifting the Bragg peak to shorter or longer wave-
lengths (Fig. 4c). The degree of swelling of the hydrogel matrix can be
controlled by the density of crosslinking. Highly-crosslinked regions of
the block copolymer were blue and less-crosslinked regions were red
in water (Fig. 4d). This block copolymer matrix was used to non-
specifically measure ionic strength in water (Kang et al., 2007). When
different anions are introduced to the block copolymer matrix, the la-
mellar structure expanded or shrank depending on the hydration char-
acteristics of each counterion (Lim et al., 2012). Another block
copolymer matrix quaternized for 36 h with direct exchange of



Fig. 4. Block copolymer sensors. (a) Possible self-assembly architectures due to microphase separation. Reprinted with permission from Bucknall and Anderson (2003), Copyright,
American Association for the Advancement of Science. (b) SEM micrograph of a PS-b-QP2VP block copolymer film deposited on a silicon wafer. Reprinted with permission from Kang
et al. (2007), Copyright, Macmillan Publishers Ltd. (c) The principle of operation. The block-copolymer stack has alternating rigid layers (red) and dynamic polyelectrolyte layers
(blue). (d) The degree of crosslinking allows tuning the diffracted light in aqueous solutions. Red regions have lower crosslinking density as compared to blue regions. Reprinted with
permission from Kang et al. (2007), Copyright, Macmillan Publishers Ltd. (e) Color change of the block copolymer films quaternized with direct exchange of counteranions. Reprinted
with permission from Lim et al. (2012), Copyright, American Chemical Society.
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counteranions (10 mM) produced a color change in the visible
spectrum (Fig. 4e). In another study, temperature-sensitive block copol-
ymers composed of high molecular weight poly(styrene-b-isoprene)
(PS-b-PI) were anionically synthesized with styrene and isoprene
monomers in cyclohexane and benzene (Yoon et al., 2008). The
resulting block copolymermatrix was sensitive to temperature changes
(30–140 °C). Additionally, phenyl boronic acid derivatives were incor-
porated in block copolymers to sense carbohydrates (Ayyub et al.,
2013). PS-b-P2VP functionalized with 2-(bromomethyl)phenylboronic
acid quantified the concentrations of fructose up to 50mMwith a detec-
tion limit of 0.5 mM. Although the self-assembly of block copolymers is
a feasible method in creating multilayer Bragg gratings, it is limited by
the requirement of synthesizing high molecular weight block copoly-
mers for sensing applications.

The external shape and internal morphology of block copolymers
(e.g., poly(styrene-block-4-vinylpyridine) (PS-b-P4VP)) have been
controlled by positioning of gold nanoparticle surfactants to create con-
vex patterns (Ku et al., 2014). The assembly of the gold NPswas localized
at the interface between P4VP domain at the particles' surface and the
surrounding water. This created a balanced interfacial interaction
between PS and P4VP domains of the block copolymer to form convex
lenses.

2.6. Bragg stack sensors

Bragg stacks consist of alternating layers of high- and low-refractive
index materials that upon interacting with incident light produce a
strong coloration due to PBG. When the grating is illuminated with a
white light source, the light is diffracted from each layer interface, creat-
ing narrow-band peaks. Such structures can be rationally designed by
changing the film architecture, materials, and the periodicity to obtain
desired optical characteristics. For example, the thickness can be varied
by spin coating from 10 to 500 nm by controlling spinning speed,
withdrawal rate, and the concentration of the deposited solution. Fur-
thermore, the refractive index can be changed bymodifying the compo-
sition of thedepositedmaterials and porosity. In bottom-up approaches,
high- and low refractive index materials such as TiO2 (n = ~2.85) and
SiO2 (n = ~1.44) can be used to construct multilayers (5–10). Many
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inorganic materials can be used to construct the Bragg stacks: metal ox-
ides, zeolites, clays, metal-organic frameworks, metals, and semicon-
ductors (Lotsch et al., 2009; Hinterholzinger et al., 2012; Bonifacio
et al., 2009).

Hydrogel-based Bragg stacks were constructed from a combination
of TiO2 nanoparticles, and hydrophobic and hydrophilic polymers such
PMMA-co-pHEMA-co-PEGDMA for application in sensing (Wang et al.,
2011). Fig. 5a,b illustrates the principle of operation of Bragg stack sen-
sors by increasing the thickness or changing the effective refractive
index of the porous layer to induce a shift in Bragg peak. In the presence
of solvents, the Bragg peak shifted to longer wavelengths. The initial
peak position of the Bragg stack sensors was tuned by changing the
hydrogel-TiO2 ratio during spin coating (Fig. 5c–e). The Bragg stack sen-
sors were tested in the presence of various organic solvents, where each
solvent produced a different wavelength shift in the diffracted light
(Fig. 5f). For example, the shifts for ethanol and DMSO were 60 and
420 nm, respectively. Another study reported a Bragg stack temperature
sensor fabricated by coating high- and low- refractive index photo-
crosslinkable copolymers: poly(paramethyl styrene) and PNIPAAm
(Chiappelli and Hayward, 2012). As the temperature was increased
from 20 to 50 °C in water, the Bragg peak blue shifted 300 nm, produc-
ing a visible color change (Fig. 5g). The fabrication of Bragg stacks with
spin coating has a number of limitations. Spin coating is amultistep pro-
cess consisting of drying and annealing steps between subsequent
layers (von Freymann et al., 2013). Additionally, Bragg stacks are
angle dependent; hence, their color changes are based on the position
of observation (Bonifacio et al., 2009). The fabrication of organic–
inorganic Bragg stacks is limited due to the instability of the polymer
in the presence of inorganic sol (colloidal suspension). For example,
Fig. 5. Bragg stack sensors. Principle of operation by (a) hydrogel swelling, and (b) change of th
consisting of TiO2 and PMMA-co-pHEMA-co-PEGDMAwith layer thicknesses of (c) 70 and 9 nm
Scale bars=100 nm. (f) The colorimetric response of spincoatedBragg stacks to organic solvent
Chemistry. (g) Colorimetric readouts of a poly(para-methyl styrene)-PNIPAAmBragg stack tem
Copyright, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim. (h) Layer-by-layer assembly of Bra
substrate.
the inorganic material solution containing TiO2 sol is acidic, which dis-
torts the morphological integrity of the sublayer (von Freymann et al.,
2013).

Layer-by-layer assembly is another approach to create Bragg
gratings. It was first introduced for creating structured thin films in bio-
technology applications (Decher et al., 1992). The surfaces of manyma-
terials including glasses, silicons, and metals carry net negative charges
in aqueous solutions due to surface oxidation and hydrolysis. When
these planar or curved surfaces are immersed in positively charged
polyelectrolyte solutions and rinsed with water, the net charge on the
surface becomes positive since polyelectrolytes are absorbed and
deposited over the negatively charged surface. Positively charged poly-
electrolytes include poly(diallyldimethylammonium chloride) (PDDA),
poly(allylamine hydrochloride) (PAH), and polyethyleneimine (PEI).
Negatively charged polyelectrolyte solutions can be deposited over the
positively chargedpolyelectrolyte layer, and these steps can be repeated
until reaching a desired thickness (Fig. 5h). The water rinsing step is
required to remove unabsorbed polyelectrolytes from the surface. Neg-
ative polyelectrolytes include poly(styrene sulfonate) (PSS), poly(vinyl
sulfate), or PAA. This process builds alternating polyelectrolyte bilayers
on the substrate. Layer-by-layer assembly has an accuracy of 1 nm
allowing nanoscale control of film thickness (Decher, 1997; Decher
and Hong, 1991). While these self-assembly techniques are typically
based on electrostatic interactions, polymer bilayers can also be con-
structed by using hydrogen and covalent bonding (Brynda and
Houska, 1996; Sun et al., 1998), hydrophobic interactions (Kotov,
1999; Lojou and Bianco, 2004), charge transfer (Shimazaki et al.,
1997), and biological recognition (Anzai et al., 1999). In addition to
polyelectrolytes, charged species of layer-by-layer bilayers may include
e effective refractive index. (c–e) SEM images of cross-sections of spincoated Bragg stacks
, (d) 80 and 20 nm, and (e) 89 and 57 nm. The insets show the diffraction at 2.0 × 2.0 cm.
s. (c–f) Reprintedwith permission fromWang et al. (2011), Copyright, The Royal Society of
perature sensor inwater. Reprintedwith permission from Chiappelli and Hayward (2012),
gg stack sensors through coating of polyanions and polycations on a negatively-charged
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carbon tubes (Mamedov et al., 2002; Jiang et al., 2005), nanoparticles
(Kotov et al., 1995), nanoplates (Keller et al., 1994; Kleinfeld and
Ferguson, 1994), organic dyes (Cooper et al., 1995), porphyrins (Araki
et al., 1996), dendrimers (He et al., 1999), polyoxometalates (Ingersoll
et al., 1994; Liu et al., 2003), polysaccharides (Lvov et al., 1998;
Richert et al., 2002), polypeptides (Müller, 2001; Boulmedais et al.,
2003), proteins (Hong et al., 1993; Kong et al., 1994; Lvov et al.,
1994, 1995), DNA and nucleic acids (Lvov et al., 1993), and viruses
(Yoo et al., 2006). In sensing applications, PAA/PAH and PAA/
poly(sodium 4-styrenesulfonate) (SPS) layers reversibly responded
to pH and organic solvents (Zhai et al., 2004). A limitation of layer-
by-layer assembly is time consuming polyelectrolyte deposition
and rinsing steps, which take up to several hours.

3. Plasmonic hydrogel sensors

Localized surface plasmon resonance (LSPR) is an optical phenome-
non in noble metal nanostructures involving sharp spectral absorption
and scattering that allow them to be used as sensors. A plasmon refers
to the oscillation of the free electrons in a noble metal (Mayer and
Hafner, 2011). When the surface plasmons are optically excited, light
is coupled into propagating or standing surface modes (Rochon and
Lévesque, 2006). When a surface plasmon occurs around a nanoparticle
sized on the order of the wavelength of the light, the free electrons
produce a collective oscillation, which is called LSPR. This enhances
the electric fields near nanoparticles' surface, and this effect decreases
with distance. The optical extinction of the nanoparticle corresponds
Fig. 6. Plasmonic hydrogel sensors. (a) Thin film hydrogel containing plasmonic nanoparticles, (
shell colloids, (d) surface immobilized nanoparticles on the surface of a hydrogel brush, showin
nanofiber (Ø= 340 nm). The inset illustrates a magnified nanofiber where a gold nanorod was
440 nm, l = 4.1 mm) at parallel polarization. The white spots at the bended sections show scat
Chemical Society.
to a maximum at the plasmon resonant frequency. The extinction
peak depends on the nanoparticle type and its complex refractive
index (Mayer and Hafner, 2011).

The LSPR can be utilized in hydrogels to sense external stimuli based
on the changes in the position of the peak wavelength or intensity.
Fig. 6a–d shows different configurations of plasmonic hydrogel sensors
in thin films, array brush, core-shell colloids, and surface brush formats.
Plasmonic nanoparticles have been incorporated in pH-responsive
hydrogels. For example, gold nanoparticles were coated with pH-
sensitive poly(methacrylic acid)-block-poly(N-isopropylacrylamide)
(PMAA-b-PNIPAAm) (Nuopponen and Tenhu, 2007). In aqueous
solutions, the nanoparticles aggregated as the pH was increased from
5 to 8. However, particle aggregation was irreversible. A blue shift in
the LSPR was measured with decreasing pH or increasing temperature.
Plasmonic crystal-based pH sensors were also reported (Mack et al.,
2007). First, a metallic fold film (50 nm) was coated over a square
array consisting of 350 nm deep cylindrical impressions with 480 nm
diameter. A monomer mixture consisting of HEMA, EGDMA, AA, and
aqueous surfactant (PEG hexadecyl ether) was photopolymerized
over the substrate. As the pH in the environmentwas increased, the hy-
drogel volumetrically expanded and decreased the refractive index,
shifting the LSPR peaks to shorter wavelengths. The sensor reversibly
detected the changes within the pH range of 1.44–7.86, with a sensitiv-
ity of 0.1 pH units.

Lithographically fabricated gold nanocrescents, which were coated
with a pH-sensitive pHEMA hydrogel matrix, have been reported
(Jiang et al., 2009). The LSPR of these nanocrescents operated in the
b)microhydrogel array brush containing plasmonic particles, (c) 2D/3D assembly of core–
g theirmicroscale and their polymer architectures. (e) SEM image of a gold nanorod/pAAm
positioned. (f) Dark-field images of a gold nanorod embedded in a pAAm nanofiber (Ø=
tered light. (e,f) Reprinted with permission fromWang et al. (2012), Copyright, American
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near-infrared region. As the pH was increased from pH 4.5 to 6.4, LSPR
peaks shifted to shorter wavelengths, achieving an accuracy of 0.045
pH units. Plasmonic sensors based on polymer brushes were also syn-
thesized (Tokareva et al., 2004). Gold nanoparticles attached to
poly(2-vinylpyridine) (P2VP) polymer brushes over gold nanoislands
allowed reversible monitoring of pH changes by transmission spectros-
copy. When the pH was changed from 5.0 to 2.0, the polymer brushes
swelled from 8.1 to 24.0 nm. This volumetric change shifted the absorp-
tion maximum of the transmission SPR spectrum of the supporting
nanoislands by 50 nm. Furthermore, light-controlled switching was
demonstrated for gold nanorods encapsulated in the thermoresponsive
PNIPAAmshells (Rodríguez-Fernández et al., 2011). Gold nanorod cores
were simultaneously used as fast optothermal manipulators
(switchers) and sensitive optical reporters of the hydrogel state based
on the analysis of the shifting behavior of the nanorod longitudinal
plasmon.

Plasmonic hydrogel sensorswere also used formeasuring concanav-
alin A (Morokoshi et al., 2004). Gold nanoparticles were functionalized
with disulfide-carrying polymer with pendent glucose residues
(poly(2-methacryloyloxyethyl d-glucopyranoside)). The binding of
concanavalin A to glucose was measured by LSPR sensing, showing a
concentration-dependent response with a limit of detection of 1.9 nM.
Another study reported the synthesis of DNA arrays using SPR hydrogel
probes (Okumura et al., 2005). DNA arrays were constructed by a
surface modification technique for detecting K-ras point mutations,
which are associated with the development of malignancies such as
lung and colon cancer. A homobifunctional alkane dithiol was adsorbed
on the surface of a gold film andwasmodifiedwith ethylene glycolmoi-
ety, which supressed non-specific adsorption during SPR analyses.
Streptavidin was immobilized on the thiol modified surface, where bio-
tinylated DNA ligands were attached to create DNA arrays. Finally, DNA
probes conjugated with CA-containing AAm nanospheres were bound
to the target DNA in a sandwich configuration. The use of nanospheres
produced an SPR signal enhancement and allowed the discrimination
of a K-ras point mutation in the SPR difference image. Furthermore,
polymer particles were doped with dyes to amplify the SPR signal orig-
inating from antibody–antigen interactions (Komatsu et al., 2006). Such
particles enhance the SPR signal by changing the imaginary part of the
refractive index. The colorant improved the signal about 100 fold as
compared to non-amplified SPR signal. Another study utilized dye-
doped polymers and SPR allowed sensing Cu2+ ions (Ock et al., 2001).
The sensor consisted of a poly(vinyl chloride-co-vinyl acetate-co-vinyl
alcohol) copolymer film doped with squarylium dye and operated
based on the changes in the refractive index upon interacting with
Cu2+ ions, with a sensitivity of 1 pM.

Plasmonic particles were coupled withMIPs to measure the concen-
tration of cholesterol (Tokareva et al., 2006). Gold nanoislands with a
mean diameter of 14.5 nm were deposited over a glass substrate,
where the interisland distance was 35 nm. These islands were spin
coated over a 3 nm poly(glycidyl methacrylate) (PGMA) layer, which
was used to graft carboxyl-terminated P2VP over the substrate. Subse-
quently, gold nanoparticles (Ø=12nm) and cholesterolwere absorbed
by the P2VPmatrix and crosslinked by a quaternization reaction involv-
ing 1,4-diiodobutane to create the MIP layer. This MIP layer was used to
sense cholesterol, where a 56 nm shift in the absorption maximum of
the gold nanoislands was measured by T-SPR spectroscopy. MIPs were
also utilized to detect domoic acid on a gold chip via SPR (Lotierzo
et al., 2004). Domoic acid is a marine neurotoxin that causes amnesic
shellfish poisoning (Lelong et al., 2012). A gold surface was functional-
ized with a self-assembled monolayer of 2-mercaptoethylamine, and
4,4′-azobis(cyanovaleric acid) was linked to the surface via
carbodiimide chemistry. A 40 nm MIP film consisting of poly(2-
(diethylamino) ethyl methacrylate) and EGDMA was attached to the
functionalized surface. The resulting system enabled the use of a com-
petitive binding assay to be performed with free domoic acid and its
conjugate, while using horseradish peroxidase as a reactive label. The
sensor allowed the measurement of domoic acid in buffer solutions
through SPR readouts, achieving a detection limit of 5 ng/mL. Table 4
shows the plasmonic hydrogel sensors and their sensitivities.

Recently, newer platforms have emerged for utilizing SPR as the
sensing probe. For example, polymer nanofibers consisting of aligned
gold nanorods were utilized for sensing humidity (Fig. 6e) (Wang
et al., 2012). A gold nanorod-doped pAAmnanofiber at parallel polariza-
tion showed red scattered light (Fig. 6f). The 540 nm thick nanofiber
waveguideswere illuminated at 785 nm fromone end, and the intensity
of the light output wasmeasured from the other end. The scattering in-
tensity of thewaveguide decreased as the RHwas increased. The sensor
had a photon-to-plasmon conversion efficiency of 70% at its longitudi-
nal resonance wavelength, and it allowed quantifying RH (10–70%)
within 110 ms using 500 pW.
4. Reflection and refractive index modulation-based hydrogel
sensors

Changes in the refractive index can be used as a measurement
mechanism in hydrogel matrixes that can dynamically respond to a tar-
get analyte. For example, hydrogel microlenses were utilized as optical
sensors due to changes in the refractive index or radius of curvature
(Ehrick et al., 2007). The response due to swelling can be quantified
by measuring the focusing power of the microlens (Fig. 7a, b). When a
hydrogel lens interacts with a target analyte, the degree of de/focusing
of the lens can be correlated with the concentration. The microdome
patterned hydrogels were synthesized by UV or thermally initiated
free-radical polymerization over a glass substrate. The hydrogel
microdomes consisted of AAm copolymerized with calmodulin and
phenothiazine derivatives. In the presence of the competing ligand
chlorpromazine, calmodulin displaced phenothiazine, causing
decrosslinking and gel swelling. This swelling changed the curvature
of the microdome and its refractive index, subsequently defocusing
the image. Microlenses were also constructed from hydrogel rings to
control the curvature of a water–oil interface (Dong et al., 2006).
These rings were created from PNIPAAm and functionalized with AA
to create sensitivity for temperature and pH, respectively. The
microlenses were produced by sandwiching a hydrogel ring between
a glass surface and a hole, where the water was added, and oil was
confined in this space. This produced a system with a water–oil inter-
face at the center of the hydrogel ring. The curvature of the interface
was modulated by volumetrically changing the hydrogel matrix
through pH or temperature.

The synthesis of thermosensitive PNIPAAm-co-AA microgels on
aminopropyltrimethoxysilane (APTMS) functionalized glass substrate
has been reported (Serpe et al., 2004). Electrostatic interactions allowed
amine groups on the substrate to bind to the AA functionalized
microgels. Upon attachment to the substrate and drying, the microgels
deformed isotropically. The microgel curvature was modulated by
changing the temperature, pH and solvents. The resulting structures
were used as dynamically tunable lenses through the modulation of
the size, focal length, and the refractive index (Kimet al., 2004). Further-
more, these microlenses were tuned with laser light. A glass substrate
was doped with gold nanoparticles (Ø = 16 nm), and a cationic poly-
electrolyte PAH was deposited on this surface to render it positively
charged (Kim et al., 2005b). PNIPAAm-co-AAcmicrogels were dropwise
added to this system over the surface in a spatial manner. The resulting
lenswas excitedwith a frequency-doubled Nd:YAG laser (λ=532 nm)
at the plasmon modes on the gold nanoparticles. Based on the same
principle, microlenses that display refractive index changes were de-
signed for protein sensing (Kim et al., 2005a, 2006, 2007a,b). These
microlenses consisted of binding- and displacement-induced formats.
Biotin was conjugated to AA within the microlens, and the assay was
tested in the presence of avidin or anti-biotin (antibody). Their presence
increased the surface crosslinking of the microlens, which induced a



Table 4
Plasmonic sensors and their applications in medical diagnostics.

Stimulus Recognition group Dynamic range Sensitivity Ref.

pH CA 3–12 units 12.5–19.5 nm/pH Mishra and Gupta (2013), Singh and Gupta, (2012)
Glucose Phenylboronic acid b50 mM 50 μM Mesch et al. (2015)
Melamine Gold nanoparticles 1 μg/mL 1 μM Manikas et al. (2014)
Concanavalin A Molecular imprinting 1 μM 0.5° resonance angle shift/min Kuriu et al. (2014)
Protein (FKBP12) Carboxylated dextran b10 nM 0.5 nM Li et al. (2015a)
Trinitrotoluene Molecular imprinting 83–250 μM 50 μM Cennamo et al. (2013)
3-Pyridinecarboxamide Molecular imprinting 0–10 mg/mL 1.483 nm/(mg/mL) Verma and Gupta (2013)
Bisphenol A Molecular imprinting b0.5 mg/dL 0.05 mg/dL (Taguchi et al., 2012)
4-Mercapto-benzoic acid Matrix interaction 10–104 nM 65 pM Ouyang et al. (2015)
2,2-Dipyridyl Matrix interaction 10–104 nM 6.4 nM Ouyang et al. (2015)
Water content in ethanol Matrix interaction b10 vol% 0.5 vol% Mishra and Gupta (2014)

264 A.K. Yetisen et al. / Biotechnology Advances 34 (2016) 250–271
refractive index change. Using an inverted microscope, a single square
projection was transited to double image.

A layer of functionalized microgels has been sandwiched be-
tween two gold films to produce an etalon. Upon interacting with
an analyte, functionalized microgels produced volumetric changes,
resulting in visual color changes and shifts in multipeak reflectance
spectra. The positions of the peaks in the spectra primarily depended
on the distance between the gold layers mediated by the microgel
thickness. Reductant-sensitive PNIPAAm microgels crosslinked
with N,N′-bis(acryloyl)cystamine have been synthesized and incor-
porated in an etalon (Li et al., 2015b). This device produced an opti-
cal response in the presence of dithiothreitol due to decrosslinking of
the microgel matrix. The reflection peak of the etalon shifted ~45 nm
as the concentration of dithiothreitol was increased from 0.19 to
1.50 mg/mL. Etalons were also used to sense ethanol (Huang and
Serpe, 2015). As the concentration of ethanol was increased to
12 vol%, the reflectance peak shifted 60 nm to longer wavelengths.
In another study, etalons were constructed from poly(N-
isopropylacrylamide-co-N-(3-aminopropyl) methacrylamide hy-
drochloride) (PNIPAAm-co-APMAH) microparticles, which were
functionalized to be sensitive to negatively charged single stranded
Fig. 7.Reflection and refractive index based hydrogel sensors. (a) A schematic of a tunable
hydrogel microlens in (1) the initial state and (2) swollen in the presence of an analyte.
(b) Image focused through a pAAmmicrolens in (1) the swollen state and (2, 3) defocused
in a less swollen states. (4) The microlens array format. Reprinted with permission from
Ehrick et al. (2007), Copyright, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.
DNA (ssDNA) (Islam and Serpe, 2014). In the presence of target
DNA (80 μM, pH 7.2), the reflectance peak shifted 60 nm to shorter
wavelengths. Etalons constructed from pyridine-functionalized
PNIPAAm have been used for gas sensing (Zhang et al., 2015). As
the CO2 was introduced to the etalon, the reflectance peak shifted
~35 nm. However, the readouts of etalons are broadband, which
may limit colorimetric measurements by eye. Nevertheless, as
compared to the other hydrogel sensors, etalons are easier to
fabricate.

Analytes can also be sensed by a polymer-coated optical fiber tip.
Optical fibers have several advantages such as remote sensing over
longdistances, small size andwave guiding as compared to other optical
sensors. The change in refractive index and swelling can be read out by
measuring the reflectance or by an interferometric setup. In one em-
bodiment, a pH sensor was created by dip coating a fiber with Kraton,
which was a styrene-ethylene, butylene-styrene, and a triblock copoly-
mer (Shakhsher et al., 1994). In its non-swollen state, the polymer was
opaque. However, when the pH was decreased from 8.0 to 6.5, the
amine groups were protonated; hence, the polymer swelled and be-
came transparent. The change in refractive index and clarity decreased
the intensity of the reflected light by a factor of 2. To improve the sensi-
tivity to the changes in refractive index, an interference method was
used (Wei Chang et al., 2012). The fiber could be bitapered or a core off-
set could be introduced so that part of the core mode leaked into the
cladding layer. Both core and cladding modes were reflected back
from the coated fiber tip andwere recombined in the fiber core. The op-
tical path length difference between the twomodes resulted in an inter-
ference pattern. The interferencewasmeasured by using a tunable laser
as a light source and recording the output intensity as a function of its
wavelength. Refractive index change was proportional to the wave-
length shift of the interference. In another study, a bitapered optical
fiberwas coatedwith polyvinyl alcohol (PVA)/PAA hydrogel. A sensitiv-
ity of 1.58 nm/pH was achieved in the range of 2.48–6.47 (Wong et al.,
2014).

Swellable polymer microspheres dispersed in hydrogels can also be
used as sensors. Such dispersions are optically opaque because of the
mismatch of the refractive index of the spheres and the hydrogel, caus-
ing light scattering. Upon introduction of an analyte, the polymer parti-
cles change refractive index, scattering, and turbidity. The polymer
microsphere method has advantages over surface immobilized poly-
mers since themicrospheres are free to swell in all directions in the hy-
drogel matrix, eliminating the problems of deformation, cracking and
detachment of the polymer layer. Furthermore, light transmission can
be measured at any wavelength with standard equipment such as a
UV/Vis/NIR spectrometer. For example, a pH sensor has been made of
a dispersion of aminated poly(vinylbenzyl chloride) microspheres
(Ø = 1 μm) suspended in a pHEMA matrix (Rooney and Seitz, 1999).
Turbidity was measured when pH was changed from pH 4.0 to 10.0. In
another study, pH-sensitive polymer particles were synthesized from
NIPAAm copolymerized with a pH sensitive functional comonomer
and embedded in a PVA matrix (Lavine et al., 2012).
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5. Tests in biological and clinical samples

Photonic hydrogel sensors have been tested in blood and urine
samples to analyze the interference from other analyte species. Ho-
lographic sensors containing phenylboronic acid (12 mol%), and
trimethylammonium chloride (12 mol%) have been used to measure
the concentration of glucose (3–33mmol L−1) in seven human blood
plasma samples (Worsley et al., 2007). Trimethylammonium chlo-
ride increased the sensitivity of phenylboronic acid to glucose over
other saccharides possessing cis-1,2- or -1,3-diols (Horgan et al.,
2006). The measurements were calibrated with an electrochemical
analyzer (2300 STAT Plus). As the concentration of glucose was in-
creased from 3.8 mmol L−1 to 30.9 mmol L−1, the Bragg peak shifted
from 640 to 571 nm. The reproducibility and repeatability of the ho-
lographic sensors were 1.9–5.4 and 1.1–4.8, respectively. However,
this approach required buffering the sample using sodium phos-
phate to keep pH constant at 7.4. Holographic sensors were also test-
ed with urine samples of diabetic patients (Yetisen et al., 2014d).
These sensors containing 3-APB (20 mol%) responded to glucose
(2–10 mM) by changing their color from green to red. In clinical
tests, the sensors were able to measure glucose up to
400 mmol L−1 within 3 min with a detection limit of 90 μM. A signif-
icant challenge with the readouts of phenylboronic acid is that cis-
diol binding with glucose requires ~1–2 h to reach saturation. To
shorten the response time, an algorithm was developed to correlate
the concentration of glucose with the binding rate, and the readouts
were achieved in 3 min. However, the interaction of 3-APB with glu-
cose was pH dependent; hence, the measurements were conducted
under fixed pH conditions.

An ammonia-sensitive CCAs has been tested with human blood
serum (Kimble et al., 2006). This CCA included covalently attached
3-aminophenol to the pHEA matrix, which formed crosslinks
through Berthelot mechanism. Ammonia present in a solution
reacted with hypochlorite to form a monochloramine, which in
turn reacted with pendant 3-aminophenols to create a crosslink in
the hydrogel matrix. pKa values of 3-aminophenol are 4.37 and 9.81
for the amine and hydroxy groups, respectively. The crosslink formation
in the hydrogel shifted the diffracted light to shorter wavelengths in
proportion to the amount of ammonia present in the solution. The sen-
sors tested in diluted human blood serum in borate buffer (pH 9,
50 mmol L−1) showed Bragg peak shifts of 2, 4, 7, and 13 nm in the
presence of 30, 75, 150, and 300 μmol L−1 ammonia within 1 h, respec-
tively. The detection limit of this sensor was 50 μmol L−1 (Kimble et al.,
2006). A limitation of this sensor was that the samples required highly
basic buffers to function. Furthermore, CCAs functionalized with 8HQ
have been used to measure Ni2+ ions in human plasma at neutral pH
(Baca et al., 2008). pAAm matrix containing CCAs was first hydrolyzed
at 24 °C for 2 h. 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC)-initiated condensation reaction was used to covalently link 5-
amino-8HQ to the pAAm matrix. When human plasma (10 mL) was
added to NiCl2 (0.75 mmol L−1, 20 mL) in HEPES (pH 7.4,
50 mmol L−1) buffer and NaCl (150 mmol L−1), the Bragg peak of the
sensor shifted 12.4 nm to shorter wavelengths. This Ni2+ sensor had a
sensitivity of 60 μmol L−1 (Baca et al., 2008). However, blood plasma
has a complex composition containing proteins and ions that contract
the pAAmmatrix due to a decrease in Donnan osmotic pressure.

Porous silicon sensors were tested in opiate spiked human urine
samples (n= 50) (Bonanno et al., 2010). Porous silicon was functional-
ized with an opiate-analogue (MG3). This was achieved via
carbodiimide chemistry by linking MG3 to lysine groups present on a
bovine serum albumin blocked surface. In oxycodone-free urine
samples, monoclonal mouse antimorphine antibody (α-M Ab) bound
to the opiate-analogue attached to silicon pore surface, which resulted
in a 6 nm Bragg peak shift to longer wavelengths. Free opiates in urine
competed for binding sites on the α-M Ab, and this resulted in a corre-
sponding decrease in thewavelength shift. Limitations of porous silicon
sensors include variation in the pore diameters, and readouts below
10 nm that are not possible to identify with eye.

6. Future directions

Many bottom-up fabrication methods including layer-by-layer
assembly, and spin- and dip-coating require the deposition of nanopar-
ticle and polymer bilayers with accuracy. In these approaches, the accu-
racy of the assembly depends on the sequential coating steps, which are
time consuming. Faster deposition schemes might be achieved through
automation and 3D printing (Xing et al., 2015). For example, robotic
coaters have been utilized in the spray layer-by-layer assembly of poly-
electrolytes and TiO2 and SiO2 multilayers (Nogueira et al., 2011). Such
methods can achieve assembly faster than the immersion layer-by-
layer deposition. Increasing the control of deposition parameters such
as temperature, spinning and withdrawal times, the quantity and the
concentration of solutions through robotics will allow creating uniform
optical properties in centimeter-sized substrates. The broader use of
ink-jet typematerial deposition systems will enable precise localization
of the analyte sensitive species and the production of patterned grat-
ings. Such devices may have the ability to convey a message at the mo-
ment of analyte detection. Furthermore, these approaches can include
novel materials such as graphene, carbon nanotubes, quantum dots,
magnetic nanoparticles, silk, nanofibers, nanocrystals, latex particles,
and negative refractive index structures (Butt et al., 2015; Deng et al.,
2014; Kong et al., 2014, 2015).

In visually read optical sensors, a significant limitation is the visibil-
ity of the photonic structures from wide angles. The semi-quantitative
readout of photonic hydrogel sensors by eye is challenging. For exam-
ple, in Bragg reflectors, the color of the diffracted light might depend
on the position of the observer. Furthermore, as the hydrogel swells
and shrinks, the angle of the diffracted light from the normal to the
surface plane changes; this is an inherent property of Bragg reflectors.
A significant contribution to the area would be the development of om-
nidirectional gratings that can be fabricated with high refractive-index
contrast constituent layers. The incorporation of diffusers, lenses, reflec-
tors, or other optical devices in photonic gratingswill improve the angle
of view (Zhao et al., 2015b). Some of these fabrication approaches may
be inspired from structural color designs in nature (Oh et al., 2014).
However, such additional features may decrease the intensity of the
diffracted light in any given direction. Hence, the optimization of
Bragg stack layers or the concentration of plasmonic nanomaterials in
the hydrogel matrix will increase the diffraction efficiency of photonic
sensors. Additionally, the development of algorithms that can estimate
the position of the Bragg peak as the hydrogel matrix swells or shrinks
will be a valuable contribution. Another potential area of development
is tuning the sensors to operate in the entire visible spectrum; currently,
only a few sensors have utilized broad colorimetric regions.

Photonic hydrogel sensors have high sensitivity ranging from pM to
mM. However, a limiting factor for realizing the full potential of photon-
ic hydrogel sensors is selectivity. Ionic strength, pH and temperature
significantly affect the performance of photonic hydrogel sensors. The
development of environmental-factor independent affinity ligands to
control the selectivity of targeting by antibodies and bioactive macro-
molecules such as nucleic acids and whole cells will be important con-
tributions to the field. Photonic hydrogels may be multiplexed to
improve the dynamic range and obtain readouts from different sensors.
Moreover, the integration of photonic hydrogel sensors with PDMS or
paper-based microfluidics may allow multiplexing (Volpatti and
Yetisen, 2014; Yetisen, 2015g; Yetisen and Volpatti, 2014). Such assays
enable the use of low-volumes of fluids to carry out sample preparation
for high-throughput analyses (Choi and Cunningham, 2007; Kim et al.,
2014). Additionally, testing the effects of batch-to-batch variability,
oxidation, material decay, and long-term storage can be significant con-
tributions in creating robust hydrogel sensors. Fabrication techniques
that allow constructing sensors from microporous hydrogels are
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required to increase diffusion rates. For example, fabrication of photonic
structures utilizing zeolite nanoparticles could be a feasible method to
increase the response timeof the sensors. Additionally, while thehydro-
gel sensors that do not selectively bind to analytes had fast response
times, the sensors with ligands take inherently longer times to bind to
target analytes and reach equilibrium. This remains a significant issue
as compared to electrochemical sensing. Investigations in binding kinet-
ics of chelating agents and ligands, and reversibility will enable the de-
velopment of photonic hydrogel sensors with improved control over
selectivity in addition to rapid response time. Studies in shrinking/
swelling dynamics, non-specific interactions with hydrogel matrix, sur-
face energy and charge, hydrophilicity/phobicity, surface roughness,
and polymer porosity will allow the rational design of sensors. Further-
more, the models that can simulate the properties of material during
swelling and shrinking cycles, change in effective refractive index, plas-
monic effects, diffraction and absorption spectra of the grating or the
nanoparticles/dopants will contribute to the theoretical understanding
of photonic hydrogel sensors.

Readout technologies of photonic hydrogel sensors should also
evolve. Smartphone technologies have recently emerged as a platform
to quantify the sensor readouts while offering connectivity options
(Yetisen et al., 2014b,c). This platform will also enable the real time
reporting of the results of IVD testing. For example, readouts of photonic
hydrogel sensors with tablet computers, smartphones/watches, or
other wearable technologies can improve the existing user interface.
The embedded light sources in these mobile devices may be utilized
to standardize the illumination of the sensors. Such platforms also pro-
vide data processing capability to mitigate the interference from back-
ground noise of the sample or ambient light. While these readout
technologies are required for quantitative analyses, there is also a signif-
icant market need for equipment free semi-quantitative diagnostics,
where photonic hydrogel sensors may offer solutions through their col-
orimetric readouts. Such devices may also include user-friendly fool-
proof text or image reporting capabilities. Additionally, photonic
hydrogels are not limited to IVD, but also offer possibilities in implant-
able chips (Choi et al., 2013) and contact lens sensors (Farandos et al.,
2015), where long-term operation, biocompatibility are required for
continuous quantification of analytes in vivo.
7. Conclusions

Many top-down and bottom-up approaches including laser writing,
self-assembly and layer-by-layer deposition have been demonstrated to
create Bragg diffraction gratings, microlenses, etalons and plasmonic
structures in hydrogels. These hydrogels have been functionalized to
be sensitive to a wide range of analytes by creating covalently-bound
pendant recognition groups or molecularly imprinted sites. Utilizing
the nanoscale structures as transducers, functionalized hydrogel ma-
trixes have been utilized to quantitatively report on the concentrations
of target analytes. When these sensors output narrow-band light over
broad wavelength ranges in the visible spectrum, the readouts were
visible to the eye for semi-quantitative analyses. Fully-quantitative
readouts were obtained using spectrophotometers.

Themajority of photonic hydrogel sensors have been created by self-
assembly. However, most approaches require lengthy syntheses to
create Bragg gratings. For example, forming monodisperse, highly-
charged PS particles through emulsion polymerization require lengthy
dialysis times. The creation of high-quality CCAswith large areas still re-
quire hours to days to complete. Furthermore, CCAs suffer from defects
since the properties of highly charged particles cannot be controlled
precisely. Other self-assembly approaches including layer-by-layer de-
position and spin coating suffer from instability and time-consuming
fabrication. For instance, formation of organic–inorganic Bragg stacks
is limited due to the instability of the polymer in the presence of acidic
inorganic sol, which distorts themorphological integrity of the sublayer.
Inclusion of charged functional groups during self-assembly and
polymerization disrupts the lattice spacing in CCAs, block copolymers,
and Bragg stacks. Hence, the functionalization of the polymer matrix
often needs to be performed post-hydrogel formation. This results in
nonuniform distributions of functional moieties throughout the hydro-
gel matrix. In inverse opals, the diffraction efficiency is relatively higher
as compared to the CCAs, but they also suffer from lattice disruption.
Block copolymers such as PS-b-PAA and PS-b-P2VP are fundamentally
limited to pH and unspecific solvent sensing. Additionally, self-
assembly approaches lack flexibility in controlling the dimensions of
the sensors. For instance, sedimentation and centrifugation do not
have precise control over sample thickness. Other approaches
involving layer-by-layer deposition is limited to thin films. Although
many applications have been demonstrated utilizing self-assembled
sensors, few of them utilized the entire visible spectrum to report on
the analyte concentrations. Most applications have wavelength shifts
smaller than 10 nm, not visible to the eye. In particular, due to high
crosslinker concentration, MIPs suffer from small wavelength shifts.
Hence, tuning range of Bragg peak shifts requires improvement in
polymer synthesis, potentially involving increased porosity and hydro-
philicity. Broad wavelength shifts and the entire visible spectrum need
to be utilized for practical colorimetric sensing applications.

In contrast to self-assembly, top-down techniques such as
holographic patterning offers reproducibility. In fabricating holographic
sensors, charged functional groups can be incorporated during poly-
merization prior to Bragg grating formation. The lattice spacing of
holographic sensors can be easily tuned using different wavelengths of
laser light. A challenge associated with holographic sensing is that
achieving high diffraction efficiency requires multiple processing steps
in silver halide chemistry. While high-energy laser patterning of holo-
graphic sensors can be completed in a few steps, this approach suffers
from low diffraction efficiency (b10%). Photopolymerization-induced
formation of Bragg gratings is a practical approach to create Bragg
gratings; however, the migration of short polymer chains during high-
intensity recording results in low diffraction efficiency. Nevertheless,
holographic patterning offers fabrication flexibility that cannot be
achieved with bottom-up approaches.

Hydrogel microlenses provide a simpler fabrication approach as
compared to the Bragg grating-based hydrogel sensors. This approach
does not require complicated fabrication approaches, and the output
of the assay is the changes in the refractive index or the focus of the
lens. However, this approach requires significant changes in the refrac-
tive index to create a resolvable shift in the spectrophotometer. This ap-
proach also falls short as a mobile rapid diagnostic assay since the
measurements require an external photodetector. Fiber optic sensors
incorporate hydrogels and a quantitative spectrometry within the
same device; and since the hydrogel matrix is in direct contact with
the fiber, the readouts are more accurate compared to other sensing
platforms. Furthermore, plasmonics is a flexible approach to create pho-
tonic hydrogel sensors, but the ability to tune the colors of plasmonic as-
says and the capability to obtain color changes in the entire visible
spectrum is yet to be demonstrated, limiting the use of this assay to
yes/no readouts or spectrophotometric analysis.

Existing IVD technologies are primarily based on molecular dyes,
electrochemistry, and gold nanoparticle-based lateral-flow assays.
These assays cannot colorimetrically display quantitative results, and
they have limited use in repeat analyses. Additionally, the incorporation
ofmany recognition agents using a single platform is challenging for tra-
ditional assays. This market gap represents an opportunity to develop
quantitative photonic hydrogel sensors that can operate in the entire
visible spectrum. Photonic hydrogels should offer improvement in
sensitivity, selectivity, response time, anduser interface to create a com-
petitive advantage and unique selling point. Potential applications may
focus on reusable, wearable, and equipment-free colorimetric IVD de-
vices. Another niche area is localized sensing and mapping the concen-
trations of analytes throughout a sample. The value of photonic
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hydrogel sensors can only be realized if they offer a strategic advance
over existing products, are compatible with existing manufacturing
lines, and show efficacy at point-of-care settings.
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